K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

x2+2xy+4y2+2xy=6xy+12

x(x+2y)+2y(2y+x)=6xy+12

(x+2y)(x+2y)=6(xy+2)

(x+2y)2=6(xy+2)

= x+2y=xy+2                          và                     x+2y=6

x-xy=2-2y                                                                 2+2y=6

x(1-y)=2(1-y)                                                             2y=6-2=4

nên x=2                                                                     y=4/2=2

Vậy x=2 và y=2

không chắc đâu Kiệt, cậu thử hỏi thầy cô c xem có đúng k, t làm tầm bậy đó,

20 tháng 4 2016

cái này đc áp dụng hằng đẳng thức hả

19 tháng 4 2016

ghi tao eo hieu j ca

 

28 tháng 10 2019

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

28 tháng 10 2019

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

12 tháng 4 2019

Xin đấy làm ơn đi sáng mai mình phải đi học rồi

12 tháng 4 2019

chẳng hiểu gì cả

9 tháng 12 2017

\(x^2+2xy+4x+4y+3y^2+3=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)

\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)

Do  \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+2\le1\)

\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)

\(\Leftrightarrow2014\le x+y+2017\le2016\)

Hay \(2014\le B\le2016\)

24 tháng 12 2017

Bạn Đinh Đức Hùng cho tớ hỏi được không ạ ?

Cái chỗ do Vp = 1- 2y^2 nên ...

Bên trên là dương 1 sao ở đưới lại là -1 ạ? Tớ chưa hiểu chỗ này, mong cậu giảng cho tớ :< pls !

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

DD
24 tháng 10 2021

\(P=\frac{xy+x+y+2}{x+y+2}=\frac{xy}{x+y+2}+1\)

Đặt \(Q=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)

Ta có: \(4=x^2+y^2\ge2xy\Leftrightarrow xy\le2\)

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\Rightarrow x+y\le2\sqrt{2}\)

\(Q=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\ge\frac{4}{x+y}+\frac{2}{xy}\ge\frac{4}{2\sqrt{2}}+\frac{2}{2}=1+\sqrt{2}\)

Suy ra \(P\le\frac{1}{1+\sqrt{2}}+1=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+1=\sqrt{2}\).

Dấu \(=\)khi \(x=y=\sqrt{2}\).

24 tháng 10 2021

TL:

P=xy+x+y+2x+y+2 =xyx+y+2 +1

Đặt Q=x+y+2xy =1x +1y +2xy 

Ta có: 4=x2+y2≥2xy⇔xy≤2

(x+y)2≤2(x2+y2)=8⇒x+y≤2√2

Q=1x +1y +2xy ≥4x+y +2xy ≥42√2 +22 =1+√2

Suy ra P≤11+√2 +1=√2−1(1+√2)(√2−1) +1=√2.

Dấu  = khi x=y=√2.

^HT^