Cho tam giác ABC cân tại A, Gọi M là trung diểm của cạnh Bc
a) chứng minh: $\Delta$Δ ABM = $\Delta$ΔACM
b) từ M vẽ MH vuông góc với AB và MK vuông góc với AC. chứng minh BH=CK
c) Từ B vẽ BP vuông góc với AC, BP cắt MH tại I. chứng minh $\Delta$ΔIBM cân
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I