K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Ek bạn , bạn có chơi nr ko

3 tháng 1 2018

kb nha minh t i c k nha

23 tháng 11 2020

mai giải hết nhé

24 tháng 11 2020

p=2 không thỏa

p=3 thỏa

nếu p>3 thì p chia 3 dư 1 hoặc 2

p chia 3 dư 1 => p+14 chia hết cho 3; lớn hơn 3 => vô lí

p chia 3 dư 2 => p+40 chia hết cho 3; lớn hơn 3 => vô lí

vậy p=3

3 tháng 3 2020

Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)

Khi đó r > 3 nên r là số lẻ

=> p.q không cùng tính chẵn lẻ

Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)

Nếu q không chia hết cho 3 thì q^2 =1 (mod3)

Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)

Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)

Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố

Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17

15 tháng 3 2023

Các cậu giúp mình nha 

THANKS

NV
8 tháng 1

Do các số nguyên tố đều lớn hơn 1

\(\Rightarrow x^y>1\Rightarrow z-1>1\Rightarrow z>2\Rightarrow z\) lẻ

\(\Rightarrow z-1\) chẵn

\(\Rightarrow x^y\) chẵn \(\Rightarrow x\) chẵn \(\Rightarrow x=2\)

Pt trở thành: \(2^y=z-1\Rightarrow z=2^y+1\)

- Với \(y=2\Rightarrow z=5\) là SNT (thỏa mãn)

- Với \(y>2\Rightarrow y\) lẻ, đặt \(y=2k+1\) với \(k\ge1\)

\(\Rightarrow z=2^{2k+1}+1=2.4^k+1\)

Hiển nhiên \(z>3\), đồng thời do \(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow2.4^k+1\equiv0\left(mod3\right)\)

\(\Rightarrow z⋮3\) mà \(z>3\Rightarrow z\) là hợp số (ktm)

Vậy \(\left(x;y;z\right)=\left(2;2;5\right)\)

8 tháng 1

\(\left(x,y,z\right)=\left(2,2,5.\right)\)