CMR
S=1/5^2+1/6^2+1/7^2+......+1/100^2 nho hon 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{5^2}<\frac{1}{4.5}\)
\(\frac{1}{6^2}<\frac{1}{5.6}\)
\(...\)
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}<\frac{1}{2}\)
Vậy \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{2}\)
\(s=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
\(S=\frac{1}{5.5}+\frac{1}{6.6}+\frac{1}{7.7}+...+\frac{1}{100.100}<\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
\(S<\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow S<\frac{1}{5}-\frac{1}{101}\)
Vì \(\frac{1}{5}<\frac{1}{2}\)nên \(\frac{1}{5}-\frac{1}{101}<\frac{1}{2}\)
hay \(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{5}-\frac{1}{101}<\frac{1}{2}\)
Vậy \(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{2}\) (đpcm)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\left(\frac{1}{1^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^2}-\frac{1}{4^2}\right)+...+\left(\frac{1}{9^2}-\frac{1}{10^2}\right)\)
\(=\frac{1}{1}-\frac{1}{10^2}\)
\(=1-\frac{1}{100}<1\)
Vậy _____________________
=3/1.4+5/4.9+7/9.16+......+19/81.100
=(1/1-1/4)+(1/4-1/9)+........+(1/81-1/100)
=1-1/100
=99/100<1(đpcm)
Số phần tử là những số đứng sau \(\left(\frac{1}{2}\right)^{12}\)
Có tất cả 8 số đó bạn ơi!
S = 1/5.5 + 1/6.6 + 1/7.7 +.....+ 1/100.100
S < 1/4.5 + 1/5.6 +.....+ 1/99.100
S < 1/4 - 1/5 + 1/5 - 1/6 +......+ 1/99 - 1/100
S < 1/4 - 1/100
S < 24/100 < 1/2
=> S < 1/2 (đpcm)