Cho tam giác MNK có MN = MK. Gọi H là trung điểm của cạnh NK.
1) Chứng minh:ΔMNH=ΔMKH. 2) Chứng minh:
3) Trên tia đối của tia NM lấy điểm D, trên tia đối của tia KM lấy điểm E sao cho ND = KE. Chứng minh: MD = ME và ΔHMD = ΔHME.
4) Gọi O là trung điểm của DE. Chứng minh: Ba điểm M, H, O thẳng hàng. 5) NK//DE
1) Xét tam giác MNH và tam giác MKH có:
+ MN = MK (gt).
+ MH chung.
+ NH = KH (H là trung điểm NK).
=> Tam giác MNH = Tam giác MKH (c - c - c).
3) Ta có: MD = MN + ND; ME = MK + KE.
Mà ND = KE (gt); MN = MK (gt).
=> MD = ME.
Xét tam giác MNK có: MN = MK (gt).
=> Tam giác MNK cân tại M.
Mà MH là đường trung tuyến (H là trung điểm NK).
=> MH là đường phân giác \(\widehat{M}\) (Tính chất các đường trong tam giác cân).
Xét tam giác HMD và tam giác HME:
+ MD = ME (cmt).
+ \(\widehat{DMH}=\widehat{EMH}\) (MH là đường phân giác \(\widehat{M}\)).
+ MH chung.
=> Tam giác HMD = Tam giác HME (c - g - c).
4) Xét tam giác MDE có: MD = ME (cmtt).
=> Tam giác MDE cân tại M.
Mà MO là đường trung tuyến (O là trung điểm DE).
=> MO là đường phân giác \(\widehat{M}\) (Tính chất các đường trong tam giác cân).
Mà MH là đường phân giác \(\widehat{M}\) (cmt).
=> Ba điểm M, H, O thẳng hàng.
5) Xét tam giác MDE cân tại M có: MO là đường trung tuyến (O là trung điểm DE).
=> MO là đường cao (Tính chất các đường trong tam giác cân).
=> MO \(\perp\) DE. (1)
Xét tam giác MNK cân tại M có: MH là đường trung tuyến (H là trung điểm NK).
=> MH là đường cao (Tính chất các đường trong tam giác cân).
=> MH \(\perp\) NK
Hay MO \(\perp\) NK. (2)
Từ (1) và (2) => NK // DE (Từ vuông góc đến song song).