K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

\(g\left(1\right)=1+1+1^2+...+1^{2011}+1^{2012}\)

\(=1+1+1+...+1\) (2013 số 1)

\(=2013.1=2013\)

\(g\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2012}+1\)

\(=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+..+\left[1+\left(-1\right)\right]+1\)

\(=0+0+...+0+1=1\)

18 tháng 4 2016

Chờ chút

17 tháng 4 2016

\(g\left(1\right)=1+1+1^2+...+1^{2012}\)

\(=1+1+1+...+1+1\)

       ( 2013 số 1)

\(=2013.1=2013\)

\(g\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2011}+\left(-1\right)^{2012}\)

\(=1+\left(-1\right)+1+\left(-1\right)+...+\left(-1\right)+1\)

\(=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+...+\left[1+\left(-1\right)\right]+1\)

\(=0+0+...+0+1\)

\(=1\)

17 tháng 4 2016

dễ v mà cũng hỏi nữa 

g(1) = 1+1+1+1+...+1 có 2013 số hạng = 2013

g(-1)= (1+1+1+...+1)+(-1-1-1-1-...-1)  dãy 1 có 1007 số dãy 2 có 1006 số = 1 

10 tháng 4 2016

Gọi đa thức dư là ax+b và thương là h(x)

có f(x)=g(x).h(x)+ax+b

thay=1 x=-1 lần lượt ta đc(vì 1-x^2có x=1 x=-1)

a+b=5 và -a+b=1

suy ra a=2 b=3

vậy dư là 2x+3

28 tháng 7 2023

a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)

Để đa thức f(x) có nghiệm là -1 khi:

\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)

\(\Rightarrow1+m-1+3m-2=0\)

\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)

b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)

Để đa thức g(x) có nghiệm là 2 khi:

\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)

\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)

\(\Rightarrow4-4m-1-5m+1=0\)

\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)

c) \(h\left(x\right)=-2x^2+mx-7m+3\)

Để đa thức h(x) có nghiệm là -1 khi:

\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)

\(\Rightarrow-2-m-7m+3=0\)

\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)

d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi

\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)

\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)

\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)

-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi

\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)

\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)

\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)

1: f(-1)=0 

=>1+m-1+3m-2=0 và 

=>4m-2=0

=>m=1/2

2: g(2)=0

=>2^2-4(m+1)-5m+1=0

=>4-5m+1-4m-4=0

=>-9m+1=0

=>m=1/9

4: f(1)=g(2)

=>1-(m-1)+3m-2=4-4(m+1)-5m+1

=>1-m+1+3m-2=4-4m-4-5m+1

=>2m-2=-9m+1

=>11m=3

=>m=3/11

3:

H(-1)=0

=>-2-m-7m+3=0

=>-8m=-1

=>m=1/8

5: g(1)=h(-2)

=>1-2(m+1)-5m+1=-8-2m-7m+3

=>-5m+2-2m-2=-9m-5

=>-7m=-9m-5

=>2m=-5

=>m=-5/2

a: g(1)=1-3=-2

g(1/3)=1-1=0

f(-2)+g(0)=\(\left(-2\right)^2-2\cdot\left(-2\right)+1=4+4+1=9\)

b: g(x)=0

nên 1-3x=0

=>x=1/3

f(x)=0 nên \(x^2-2x=0\)

=>x=0 hoặc x=2

20 tháng 5 2021

câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1

20 tháng 5 2021

Tk

Bài 2

a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

=  \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)

=  2x + 1

b) 2x + 1 = 0

 2x = -1

 x=\(\dfrac{-1}{2}\)

13 tháng 4 2023

Bài 1

Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)

\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm

VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)

\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)

\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)

Ra hai kết quả khác nhau 

\(\Rightarrow x=-4\) không là nghiệm

Bài 2

\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm 

2 tháng 4 2019

\(g\left(x\right)=1+x+x^2+x^3+....+x^{2020}\)

\(\Rightarrow g\left(x\right)\cdot x=x+x^2+x^3+x^4+......+x^{2021}\)

\(\Rightarrow g\left(x\right)\cdot\left(x-1\right)=x^{2021}-1\)

\(\Rightarrow g\left(x\right)=\frac{x^{2021}-1}{x-1}\)

\(\Rightarrow\hept{\begin{cases}g\left(-1\right)=\frac{\left(-1\right)^{2021}-1}{-1-1}=-1\\g\left(2\right)=\frac{2^{2021}-1}{2-1}=2^{2021}-1\end{cases}}\)