Giải các bpt sau:
e/x*(x^2 +3*x+2) >= 0
f/x2(1-x)/x-2 nhỏ hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)
\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)
\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)
\(\Leftrightarrow-2x>61\)
\(\Leftrightarrow x< -\frac{61}{2}\)
Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)
Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3
\(\left(2x-2\right)\left(2x+3\right)\le0\)
TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)
TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)
Vậy ...
2. \(|x| +|x-1| ≤ 5 \\ \Leftrightarrow |x| + |x-1| ≤ \dfrac{5}{2}\)
\(-∞\) | \(0\) | \(1\) | \(+∞\) | |
\(|x|\) | \(-x\) | \(x\) | \(x\) | \(x\) |
\(|x-1|\) | \(1-x\) | \(1-x\) | \(x-1\) | \(x-1\) |
\(|x|+|x-1|\) | \(1-2x\) | \(1\) | \(2x-1\) | \(2x-1\) |
TH1: \(1-2x ≤ \dfrac{5}{2} \Leftrightarrow x ≥ \dfrac{-3}{4}\)
TH2: \(2x-1 ≤ \dfrac{5}{2} \Leftrightarrow x ≤ \dfrac{7}{4}\)
Vậy....
đề = x-1>=0 \(\rightarrow\)x>=1
2x-3>=0\(\rightarrow\)x>=1,5
so sánh điều kiện S=(1;1,5)
ta thay đấu() = đấu ngoặc nhọn
a, Ta có\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)
\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)
\(\Leftrightarrow x^2+9x+6\ge x^2-4\)
\(\Leftrightarrow9x+10\ge0\Leftrightarrow x\ge-\frac{10}{9}\)
\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)
\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)
\(\Leftrightarrow x^2+6x+3x-x^2\ge-4-9+3\)
\(\Leftrightarrow9x\ge-10\)
\(\Leftrightarrow x\ge-\frac{10}{9}\)
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)