Phân tích đa thức thành nhân tử
\(x^8+x+1\) Làm giúp mình đi đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ là đề thiếu đó bạn :)
đề đáng lẽ phải là: \(x^7+x^2+1\)
\(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left[x\left(x-1\right)\left(x+3\right)+1\right]\left(x^2+x+1\right)\)
\(=\left[\left(x^2-x\right)\left(x^3+1\right)+1\right]\left(x^2+x+1\right)\)
\(=\left(x^5-x^4-x^2-x+1\right)\left(x^2+x+1\right)\)
A=x14+x7+1
=(x14+x13+x12)-(x13+x12+x11)+(x11+x10+x9)-(x10+x9+x8)+(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
Đặt B=x2+x+1
=>A=x12B-x11B+x9B-x8B+x6B-x4B+x3B-xB+B
=>A=B(x12-x11+x9-x8+x6-x4+x3-x+1)
Thay B=x2+x+1 vào A là xong
\(\dfrac{xy}{2}-x+\dfrac{x^2}{4}=x\left(\dfrac{y}{2}-1+\dfrac{x}{4}\right)\)
Phân tích đa thức thành nhân tử
\(x^3-5x^2+2x+8\)
các bạn làm nhanh giúp mình được không mình đang gấp
x3-5x2+2x+8
=x3-6x2+8x+x2-6x+8
=x(x2-6x+8)+(x2-6x+8)
=(x2-6x+8)(x+1)
=[x2-2x-4x+8](x+1)
=[x(x-2)-4(x-2)](x+1)
=(x-4)(x-2)(x+1)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
mình k ghi lại đề nha bạn
\(=\left(x-y\right)^2-16z^2\\ =\left(x-y-4z\right)\left(x-y+4z\right)\)
x^8 + x + 1 = (x^8 + x^7 + x^6) - ( x^7 + x^6 + x^5) + (x^5 + x^4 + x^3) -(x^4 + x^3 + x^2) + (x^2+x+1)
= (x^2+x+1)(x^6 - x^5 + x^3 - x^2 +1)
Ta có \(x^8+x+1=x^8-x^2+x^2+x+1\)
\(=x^2\left(x^6-1\right)+x^2+x+1\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1\)
\(=\left(x^3-1\right)\left(x^5+x^2\right)+x^2+x+1\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^5+x^2\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\text{[}\left(x-1\right)\left(x^5+x^2\right)+1\text{]}\text{ }\)
\(=\left(x^2+x+1\right)\left(x^6+x^3-x^5-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
Vậy \(x^8+x+1=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)