K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

a. Xét tam giác ABC vuông tại A có:

AB2+AC2=BC2 (định lý Py-ta-go)

=>62+AC2=BC2

=>AC=8 cm.

=> SABC=AB.AC=6.8=48 (cm)

b. Ta có: SABC=AB.AC=BC.AH

=>6.8=10.AH

=>AH=4,8 cm.

 

18 tháng 1 2022

a/
diện tích tam giác ABC là:
\(\dfrac{6.10}{2}\)=30 (cm2)
đường cao AH là
30:10=3 cm

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b:AB=căn 3,6*10=6(cm)

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>S HAB/S HCA=(AB/CA)^2

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

23 tháng 4 2022

a. Có: tam giác ABC vuông tại A (gt)

=> góc BAC = 90o

Có: AH là đường cao của tam giác ABC (gt)

=> góc AHB = góc AHC = 90o

Xet tam giác HBA và tam giác ABC, có:

góc AHB = góc BAC (=90o)

góc B chung

=> tam giác HBA ~ tam giác ABC (g.g)

23 tháng 4 2022

b. Xét tam giác ABC vuông tại A, có:

AB2 + AC2 = BC2 (định lý Py-ta-go)

3+ 42 = BC(thay số)

BC2 = 25

=> BC = 5

Vậy...

a: AC=8cm

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: AH=4,8cm

16 tháng 1 2022

bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx

8 tháng 1 2022

a) \(\Delta ABC\) vuông tại A (gt).

\(\Rightarrow S_{\Delta ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}6.8=24\left(cm^2\right).\)

b) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2.\Rightarrow BC^2=6^2+8^2.\Leftrightarrow BC^2=36+64=100.\)

\(\Rightarrow BC=10\left(cm\right).\)

c) Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}AH.BC.\)

              \(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\)

\(\Rightarrow\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC.\)

\(\Rightarrow\dfrac{1}{2}AH.10=24.\Leftrightarrow AH=4,8\left(cm\right).\)

 

8 tháng 1 2022

a)Diện tích tam giác vuông ABC là:

S=1/2* AB *AC = 1/2 * 6 * 8= 24 (cm2)

b)Độ dài cạnh BC là:

theo định lý pytago về tam giác vuông, ta có

BC2= AB2+AC2= 62 + 82 = 100 cm => BC = \(\sqrt{100}\) = 10cm

c) Độ dài đường cao AH

AC2= BC*HC => HC = \(\dfrac{AC^2}{BC}\) = 6,4 cm

BH = BC - HC = 10 - 6,4 = 3,6 cm

AH2 = BH*HC = 6,4 * 3,6 = \(\dfrac{576}{25}\) => AH = \(\sqrt{\dfrac{576}{25}}=4,8cm\)

 

 

 

8 tháng 1 2022

a,

\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{6.8}{2}=24cm^2\)

b. \(BC^2=AB^2+AC^2\Rightarrow BC=10cm\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8cm

16 tháng 1 2022

a)SABC=6.8=48(cm2)

b)Áp dụng định lý Py-ta-go trong tam giác vuông ABC có: BC=10cm

c)AB.AC=BC.AH =>AH=(AB.AC)/BC=4,8cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)

CH=BC-BH=6,4(cm)