K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

M lớn nhất khi (x+1995)^2 nhỏ nhất

  • \(\Leftrightarrow\)x+1995=1

\(\Rightarrow x=-1994\)

  • x+1995=-1

     x=-1996. 

sau đó thử lại đi nhá

18 tháng 4 2016

Hà lê sai hoàn toàn

12 tháng 10 2017

GTLN(B)=0

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

10 tháng 2 2018

a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2

= 2x^2-4xy+2y^2/x^2-xy+y^2

= 2.(x^2-2xy+y^2)/x^2-xy+y^2

= 2.(x-y)^2/x^2-xy+y^2 

>= 0 ( vì x^2-xy+y^2 > 0 )

Dấu "=" xảy ra <=> x-y=0 <=> x=y

Vậy ..........

10 tháng 2 2018

b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x

= (x-1995)^2 + 7980x >= 7980x

=> M < = x/7980x = 1/7980 ( vì x > 0 )

Dấu "=" xảy ra <=> x-1995=0 <=> x=1995

Vậy ...............

4 tháng 8 2018

Ta có :  \(M=\frac{x}{\left(x+1995\right)^2}\)

Đặt  \(x+1995=y\left(y\ne0\right)\)

\(\Rightarrow x=y-1995\)

\(\Rightarrow M=\frac{y-1995}{y^2}\)

\(M=\frac{1}{y}-\frac{1995}{y^2}\)

\(-1995M=-\frac{1995}{y}+\frac{1995^2}{y^2}\)

\(-1995M=\left(\frac{1995^2}{y^2}-\frac{1995}{y}+\frac{1}{4}\right)-\frac{1}{4}\)

\(-1995M=\left(\frac{1995}{y}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Do  \(\left(\frac{1995}{y}-\frac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-1995M\ge\frac{1}{4}\)

\(\Leftrightarrow M\le-\frac{1}{7980}\)

Dấu "=" xảy ra khi : 

\(\frac{1995}{y}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{1995}{y}=\frac{1}{2}\Leftrightarrow y=3990\)

Mà  \(x=y-1995\)

\(\Leftrightarrow x=3990-1995=1995\)

Vậy  \(M_{Max}=-\frac{1}{7980}\Leftrightarrow x=1995\)

4 tháng 8 2018

cách khác nha :

https://olm.vn/hoi-dap/question/1193316.html

:))

20 tháng 9 2018

\(3xy-1=x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+1\right)\ge0\)

\(\Leftrightarrow\sqrt{xy}\ge1\Leftrightarrow xy\ge1\)

Và \(xy+x+y+1=4xy\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4xy\)

Ta có: \(\frac{3x}{y\left(x+1\right)}-\frac{1}{y^2}=\frac{3xy-x-1}{y^2\left(x+1\right)}=\frac{y}{y^2\left(x+1\right)}=\frac{1}{y\left(x+1\right)}\)

\(M=\frac{1}{y\left(x+1\right)}+\frac{1}{x\left(y+1\right)}=\frac{2xy+x+y}{4x^2y^2}=5xy-1\)

Xét hàm số \(f\left(t\right)=\frac{20t^2-8t\left(5t-1\right)}{16t^4}=\frac{8t-20t^2}{16t^4}\le0\) 

Nên hàm số nghịch biến với \(t\ge1\)

\(\Rightarrow f\left(t\right)_{Max}=f\left(1\right)=1\Leftrightarrow M_{Max}=1\)

23 tháng 10 2018

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\Rightarrow a+b+ab=3\)

Ta có:\(3=a+b+ab\ge3\sqrt[3]{a^2b^2}\Rightarrow ab\le1\)

Suy ra

\(M=\frac{ab}{a+1}+\frac{ab}{b+1}=ab\left(\frac{a+1+b+1}{ab+a+b+1}\right)=\frac{ab.\left(5-ab\right)}{4}=\frac{-\left[\left(ab\right)^2-2ab+1\right]+3ab+1}{4}=\frac{-\left(ab-1\right)^2+3ab+1}{4}\le1\)Dấu bằng xảy ra khi a=b=1

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2