K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2020

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^3+30xy=2000\)

\(\Leftrightarrow2\left[\left(x+y\right)^3-1000\right]-3xy\left(x+y-10\right)=0\)

\(\Leftrightarrow2\left(x+y-10\right)\left[\left(x+y\right)^2-10\left(x+y\right)+100\right]-3xy\left(x+y-10\right)=0\)

\(\Leftrightarrow\left(x+y-10\right)\left[2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\right]=0\)

\(\Leftrightarrow x+y=10\)

Do:

\(2\left(x+y\right)^2-20\left(x+y\right)+200-3xy\)

\(=\left(x+y-10\right)^2+\left(x+y\right)^2-3xy+100\)

\(=\left(x+y-10\right)^2+\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+100>0\)

26 tháng 12 2020

https://hoc24.vn/cau-hoi/tim-xyin-z-biet-a2x2-xy-7x-2y-y2-70bx2-2y2-3xy-3x-5y-140ps-huong-dan-em-lam-chi-tiet-dang-nay-nua-voi-a.330915967066

Giúp e dạng này với anh . Cho e spam xíu :(

1 tháng 2

\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} 1-y\geq0\\ 3+y\geq0 \end{cases}\\ \begin{cases} 1-y\leq0\\ 3+y\leq0 \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} y\leq1\\ y\geq-3 \end{cases}\\ \begin{cases} y\geq1\text{(Vô lí)}\\ y\leq-3\text{(Vô lí)} \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha

12 tháng 11 2016

+) Vì y và x tỉ lệ thuận với nhau nên:

\(y=kx\)

\(\Rightarrow y_1=k\cdot x_1\)

hay \(6=k\cdot3\)

\(\Rightarrow k=2\)

Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.

12 tháng 11 2016

+) Ta có bảng sau:

xx1=3x2=4x3=5x4=6
yy1=6y2=8x4=10x5=12

 

4 tháng 10 2021

Bổ sung thêm \(x,y\in Z\) thì mới làm đc

\(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\\ \Leftrightarrow\left(x-2\right)\left(x+y-2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)

Ta thấy \(x+y-2>x-2;\forall x,y\in Z\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x+y-2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

ai giúp em với TvT, tối nay mà ko kó bài nộp là chớt em!

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

20 tháng 4 2020

a)\(\frac{2}{7}\)\(\frac{4}{14}\)\(\frac{6}{21}\)=\(\frac{8}{28}\)= ...

vì 5 < y < 29 \(\Rightarrow\)\(\frac{x}{y}\)\(\frac{4}{14}\)\(\frac{6}{21}\)\(\frac{8}{28}\)

b)\(\frac{28}{8}\)\(\frac{7}{2}\)\(\frac{14}{4}\)\(\frac{21}{6}\)\(\frac{35}{10}\)= ...

vì 1 < y < 10\(\Rightarrow\)\(\frac{x}{y}\)\(\frac{14}{4}\)\(\frac{21}{6}\)

7 tháng 2 2020

(x+y)2=(x+y)1(x+y)2=(x+y)1

⇒(x+y)2−(x+y)1=0⇒(x+y)2−(x+y)1=0

⇒(x+y)[(x+y)−1]=0⇒(x+y)[(x+y)−1]=0

⇒[x=−yx+y=1

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

NV
11 tháng 9 2021

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-\left(xy\right)^2\left(x+y\right)\)

\(=10.26-\left(-3\right)^2.2=...\)

11 tháng 9 2021

(x+y)5=32

⇔ x5+5x4y+10x3y2+10x2y3+5xy4+y5 = 32

⇔ x5+y= 32-5xy(x3+y3)-10x2y2(x+y)

              = 32-5.(-3).26-10.(-3)2.2

              = 242