K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

n=0;-2

17 tháng 4 2016

dễ :D

6n-3/3n+1=6n+2-5/3n+1=2(3n+1)-5/3n+1=2(3n+1)/3n+1+5/3n+1=2+5/3n+1=>3n+1 thuộc Ư(5) mà Ư(5)={1;-1;5;-5}

=> n=0;-2/3( loại) ;4/3( loại); -2

=>\(\frac{6n-2-1}{3n-1}\)=>\(\frac{2\left(3n-1\right)-1}{3n-1}\)=2\(\frac{1}{3n-1}\)

=>để (6n-1)/(3n-1) nguyên thì 1/3n-1 nguyên

=>1 chia hết cho 3n-1

=>3n-1 thuộc 1,-1

16 tháng 4 2017

ta có : 6n-3 / 3n+1

         = 6n+2-5 / 3n+1

         = 6n+2 / 3n+1  -  5/3n+1

          = 2 - 5/3n+1

Vì 2 là số nguyên nên để 6n-3/3n+1 là số nguyên thì 5/3n+1 phải là số nguyên

Để 5/3n+1 là số nguyên thì 5 chia hết cho 3n+1 

=> 3n + 1 thuộc Ư(5)

mà Ư(5) = { -1 ; 1 ; -5 ; 5 }

=> 3n+1 thuộc { -1 ; 1 ; -5 ; 5 }

=> 3n thuộc { -2 ; 0 ; -6 ; 4 }

vì 3n chia hết cho 3 với mọi số nguyên n

=> 3n thuộc { 0 ; -6 }

=> n thuộc { 0 ; -2 }

ta có bảng sau

   
n0-2
6n-3-3-15
3n+11-5
6n3/3n+1   -3/1=-3 thuộc Z ( thỏa mãn -15/-5=3 thuộc Z ( thỏa mãn )               


Vậy tập hợp  giá trị n thỏa mãn là { 0 ; -2 }

a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1

=>3(n-1)+7 chia hết cho n-1

=> n-1 thuộc Ư(7)={1;7;-1;-7}

Phần cuối bn tự làm nha

Còn câu b làm tương tự

8 tháng 3 2020

a) Từ đề bài, ta có:

\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)

b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)

8 tháng 5 2017

Đặt \(A=\frac{6n-3}{3n+1}=\frac{\left(6n+2\right)-2-3}{3n+1}=\frac{2.\left(3n+1\right)-5}{3n+1}\)

\(\Rightarrow A=\frac{2.\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}=2-\frac{5}{3n+1}\)

\(A\in Z\Leftrightarrow\frac{5}{3n+1}\in Z\Leftrightarrow5⋮\left(3n+1\right)\Leftrightarrow\left(3n+1\right)\inƯ\left(5\right)\)

=> 3n + 1 \(\in\){1;-1;5;-5}

  Ta có bảng : 

3n+11-15-5
n0\(-\frac{2}{3}\)\(\frac{4}{3}\)-2

  Mà \(n\in Z\)=>\(n\in\){0;-2} để phân số \(\frac{6n-3}{3n+1}\in Z\)

8 tháng 5 2017

để \(\frac{6n-3}{3n+1}\)là số nguyên thì 6n-3\(⋮\)3n-1

ta có \(\orbr{\begin{cases}6n-3⋮3n+1\\3n+1⋮3n+1\end{cases}}\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\2\left(3n+1\right)⋮3n+1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\6n+2⋮3n+1\end{cases}}\)

\(\Rightarrow\left(6n+2\right)-\left(6n-3\right)\)\(⋮3n+1\)

                \(5⋮3n+1\)

=>3n+1\(\in\)Ư(5)={-1,-5,1,5}

ta co bang sau 

...

2 tháng 5 2021

Ta có M=6n-3/3n+1=(6n+2)-5/3n+1=2(3n+1)-5/3n+1=2- 5/3n+1 

Khi đó M nguyên khi 5/3n+1 nguyên

 <=> 3n+1={1;-1;5;-5}

<=> n={0;-2/3;4/3;-2}

Mà n nguyên

=> n={0;-2}

Khi đó M lần lượt nhận các giá trị tương ứng -3;3 đều là các số nguyên

Vậy n={0;-2}                              

24 tháng 2 2017

Gọi ước chung là d (d thuộc N*)

ta có 6n+3chia hết cho d

        3n+1chia hết cho d

=>6n-3chia hết cho d

    6n+2chia hết cho d

=>(6n-3)-(6n+2)chia hết cho d

=>1chia hết cho d

=> d=1

=>n=1

vậy n=1

30 tháng 4 2023

Em đăng vào môn Toán nhé!

1 tháng 5 2023

A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0  ⇒ n # -1/3)

\(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1

           ⇒   6n + 2 - 5 ⋮ 3n + 1

           ⇒   2.( 3n + 1) - 5 ⋮  3n + 1

           ⇒                       5 ⋮ 3n + 1

          ⇒         3n + 1 \(\in\) { -5; -1; 1; 5}

          ⇒        n\(\in\) {-2; -2/3; 0; 4/3}

          vì n \(\in\) Z nên n \(\in\) { -2; 0}

          Vậy n \(\in\) { -2; 0}

             

8 tháng 5 2018

\(=>\frac{6n-2-1}{3n-1}=>\frac{2\left(3n-1\right)}{3n-1}=2\)\(2\frac{2}{3n-1}\)

=> để 6n-1/3n-1 nguyên thì 1/3n-1 là nguyên.

=> 1 chia hết cho 3n-1

=> 3n-1 thuộc {1;-1}