Cho số abc chia hết cho 7.Chứng tỏ 2a+3b+c chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Tớ làm phần b trước nha !
Ta có : abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1 )
= abc x 1001
= abc x 7 x 11 x 13
Vậy abcabc chia hết cho 7 ; 11 và 13
a)aaaaa=a*111111=a*15873*7(chia hết cho 7)
b)abcabc=abc*1001=abc*91*11(chia hết cho 11)
c)aaa=a*111=a*3*37(chia hết cho 37)
d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)