Tìm đa thức b biết
B-(3\(x^6\)-4\(xy^5\)+\(\dfrac{1}{3}\)\(xy^2\)-\(\dfrac{3}{2}\))=(7\(x^6\)-\(\dfrac{1}{2}xy^5-xy^2-\dfrac{1}{3}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
a/
\(\Leftrightarrow A=\dfrac{3}{8}xy^2+B-\dfrac{5}{6}x^2y+\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\\ \Leftrightarrow A-B=-\dfrac{1}{12}x^2y-\dfrac{1}{4}xy^2\)
b/
\(\Leftrightarrow A-B=5xy^3-\dfrac{5}{8}yx^3-\dfrac{21}{4}xy^3+\dfrac{3}{7}x^3y\\ \Leftrightarrow A-B=-\dfrac{1}{4}xy^3-\dfrac{11}{56}x^3y\)
a) Ta có: \(A=1\dfrac{1}{4}\cdot x^3y\cdot\left(-\dfrac{6}{7}xy^5\right)^0\cdot\left(-2\dfrac{2}{3}xy\right)\)
\(=\dfrac{5}{4}x^3y\cdot\dfrac{-8}{3}xy\)
\(=\left(\dfrac{5}{4}\cdot\dfrac{-8}{3}\right)\cdot\left(x^3\cdot x\right)\cdot\left(y\cdot y\right)\)
\(=\dfrac{-10}{3}x^4y^2\)
Bài 1:
+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)
\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)
+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)
\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)
\(y=\dfrac{9}{50}\)
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
T giải thử thôi nhé :w
a) \(1\frac{1}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-2\frac{1}{3}xy\right)\)
\(=\frac{5}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-\frac{5}{2}xy\right)\)
\(=1.\frac{5}{4}x^2y\left(-\frac{5}{2}xy\right)\)
\(=-\frac{5}{4}x^2y.1.\frac{5}{2}xy\)
\(=-1.\frac{5}{4}.\frac{5}{2}x^3y^2\)
\(=-1.\frac{25x^3y^2}{8}\)
\(=-\frac{25x^3y^2}{8}\)
\(a,\dfrac{1}{3x-3y}=\dfrac{x-y}{3\left(x-y\right)^2};\dfrac{1}{x^2-2xy+y^2}=\dfrac{3}{3\left(x-y\right)^2}\\ b,\dfrac{3}{x^2-3x}=\dfrac{6}{2x\left(x-3\right)};\dfrac{5}{2x-6}=\dfrac{5x}{2x\left(x-3\right)}\\ c,\dfrac{x}{x+3}=\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{3-x}=\dfrac{-x-3}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{x^2-9}=\dfrac{1}{\left(x-3\right)\left(x+3\right)}\)
\(d,\dfrac{1}{x^2+xy}=\dfrac{xy-y^2}{xy\left(x+y\right)\left(x-y\right)};\dfrac{1}{xy-y^2}=\dfrac{x^2+xy}{xy\left(x-y\right)\left(x+y\right)};\dfrac{2}{y^2-x^2}=\dfrac{-2xy}{xy\left(x-y\right)\left(x+y\right)}\)
B-(\(3x^6-4xy^5+\dfrac{1}{3}xy^2\))=
B= \(\left(7x^6-\dfrac{1}{2}xy^5-xy^2-\dfrac{1}{3}\right)+\left(3x^6-4xy^5+\dfrac{1}{3}xy^2-\dfrac{3}{2}\right)\)
B= \(7x^6-\dfrac{1}{2}xy^5-xy^2-\dfrac{1}{3}+3x^6-4xy^5+\dfrac{1}{3}xy^2-\dfrac{3}{2}\)
B= \(7x^6+3x^6-\dfrac{1}{2}xy^5-4xy^5-xy^2+\dfrac{1}{3}xy^2-\dfrac{1}{3}+\dfrac{2}{3}\)
B= \(10x^6-\dfrac{9}{2}xy^5-\dfrac{2}{3}xy^2+\dfrac{1}{3}\)