tìm n thuộc N để giá trị các b.th sau là số ng tố:
a)12n2-5n-25
b)n2021+n22+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nhận giá trị nguyên thì
\(\Leftrightarrow\)7 chia hết cho n-1
\(\Rightarrow n-1\inƯ\left(7\right)\)={-1;-7;1;7}
Ta có bảng giá trị
n-1 | -1 | -7 | 1 | 7 |
n | 0 | -6 | 2 | 8 |
A) Để A là phân số thì \(n+1\ne0\Leftrightarrow n\ne-1\)
b)\(\frac{5n+1}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=5+\frac{-4}{n+1}\)
Để \(A\in Z\Rightarrow5+\frac{-4}{n+1}\in Z\)
\(\Rightarrow\frac{-4}{n+1}\in Z\)
\(\Rightarrow n+1\in U\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)
a) Học sinh tự làm
b) 2 n + 1 n + 1 ( n ≠ − 1 ) có giá trị là số nguyên khi (2n +1) ⋮ (n +1) hay [2(n +1) -1] ⋮ (n +1)
Từ đó suy ra 1 ⋮ (n +1)
Do đó n ∈ {- 2;0).
Để B nguyên thì 5n+1+6 chia hết cho 5n+1
=>\(5n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
mà n nguyên
nên \(n\in\left\{0;1\right\}\)
Với n thuộc Z
Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)
=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)
Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)
+) Với n + 3 = 1 => n =-2 => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.
+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại
+) Với 2n -1 = 1 => n =1 => |A | = 4 loại
+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.
Vậy n=-2 hoặc n =0.
Lời giải:
a.
$12n^2-5n-25=(3n-5)(4n+5)$
Để $12n^2-5n-25$ là số nguyên tố thì một trong hai thừa số $3n-5, 4n+5$ phải bằng $1$ và số còn là là số nguyên tố.
Mà $3n-5< 4n+5$ với mọi $n\in\mathbb{N}$ nên $3n-5=1$
$\Rightarrow n=2$
Thử lại thấy $12n^2-5n-25=13$ là snt (thỏa mãn)
b.
Với $n=1$ thì $n^{2021}+n^{22}+1=3$ là snt
Với $n\geq 2$ thì:
$n^{2021}+n^{22}+1=(n^{2021}-n^2)+(n^{22}-n)+(n^2+n+1)$
$=n^2(n^{2019}-1)+n(n^{21}-1)+(n^2+n+1)$
$=n^2[(n^3)^{673}-1]+n[(n^3)^7-1)]+(n^2+n+1)$
$=n^2(n^3-1).A+n(n^3-1).B+(n^2+n+1)$
$=n^2(n-1)(n^2+n+1).A+n(n-1)(n^2+n+1)B+(n^2+n+1)$
$=(n^2+n+1)[n^2(n-1)A+n(n-1)B+1]$
Trong đó, $A,B$ chỉ là ký hiệu thay thế cho biểu thức dài khi khai triển HĐT.
Dễ thấy $n^2+n+1>2$ với mọi $n\geq 2$ nên để biểu thức là snt thì:
$n^2(n-1)A+n(n-1)B+1=1$
$\Rightarrow n^2(n-1)A+n(n-1)B=0$ (điều này vô lý với $n\geq 2; A, B>2$ với mọi $n\geq 2$)
Do đó $n=1$ là đáp án duy nhất/