K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 1 2022

Lời giải:

a. 

$12n^2-5n-25=(3n-5)(4n+5)$

Để $12n^2-5n-25$ là số nguyên tố thì một trong hai thừa số $3n-5, 4n+5$ phải bằng $1$ và số còn là là số nguyên tố. 

Mà $3n-5< 4n+5$ với mọi $n\in\mathbb{N}$ nên $3n-5=1$

$\Rightarrow n=2$

Thử lại thấy $12n^2-5n-25=13$ là snt (thỏa mãn)

b.

Với $n=1$ thì $n^{2021}+n^{22}+1=3$ là snt

Với $n\geq 2$ thì:

$n^{2021}+n^{22}+1=(n^{2021}-n^2)+(n^{22}-n)+(n^2+n+1)$

$=n^2(n^{2019}-1)+n(n^{21}-1)+(n^2+n+1)$

$=n^2[(n^3)^{673}-1]+n[(n^3)^7-1)]+(n^2+n+1)$

$=n^2(n^3-1).A+n(n^3-1).B+(n^2+n+1)$

$=n^2(n-1)(n^2+n+1).A+n(n-1)(n^2+n+1)B+(n^2+n+1)$

$=(n^2+n+1)[n^2(n-1)A+n(n-1)B+1]$

Trong đó, $A,B$ chỉ là ký hiệu thay thế cho biểu thức dài khi khai triển HĐT.

Dễ thấy $n^2+n+1>2$ với mọi $n\geq 2$ nên để biểu thức là snt thì:

$n^2(n-1)A+n(n-1)B+1=1$

$\Rightarrow n^2(n-1)A+n(n-1)B=0$ (điều này vô lý với $n\geq 2; A, B>2$ với mọi $n\geq 2$)

Do đó $n=1$ là đáp án duy nhất/

28 tháng 1 2018

Để A nhận giá trị nguyên thì

\(\Leftrightarrow\)7 chia hết cho n-1

\(\Rightarrow n-1\inƯ\left(7\right)\)={-1;-7;1;7}

Ta có bảng giá trị

n-1-1-717
n0-628
25 tháng 7 2017

A) Để A là phân số thì \(n+1\ne0\Leftrightarrow n\ne-1\)

b)\(\frac{5n+1}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=5+\frac{-4}{n+1}\)

Để \(A\in Z\Rightarrow5+\frac{-4}{n+1}\in Z\)

\(\Rightarrow\frac{-4}{n+1}\in Z\)

\(\Rightarrow n+1\in U\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)

26 tháng 7 2017

Thank You Bạn Nha 

19 tháng 11 2019

a) Học sinh tự làm

b) 2 n + 1 n + 1 ( n ≠ − 1 ) có giá trị là số nguyên khi (2n +1) ⋮  (n +1) hay [2(n +1) -1] ⋮  (n +1)

Từ đó suy ra 1 ⋮  (n +1)

Do đó n {- 2;0).

Để B nguyên thì 5n+1+6 chia hết cho 5n+1

=>\(5n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

mà n nguyên

nên \(n\in\left\{0;1\right\}\)

27 tháng 11 2019

23 tháng 10 2019

Với n thuộc Z

Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)

=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)

Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)

+) Với n + 3 = 1 => n =-2  => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.

+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại

+) Với 2n -1 = 1 => n =1 => |A | = 4 loại

+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.

Vậy n=-2 hoặc n =0.