3n-4 chia hết cho n + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Mình chỉ giúp bạn được những câu này thôi , mình phải đi ngủ , thông cảm ạ :
c ) 38 - 3n chia hết cho n .
Vì 3n chia hết cho n nên 38 chia hết cho n
Suy ra : n thuộc Ư (38) = { 1 ; 2 ; 19 ; 38 }
Vậy n thuộc { 1 ; 2 ; 19 ; 38 }
d ) n + 5 chia hết cho n + 1 .
\(\Rightarrow\)n + 1 + 4 chia hết cho n + 1 .
Mà : n + 1 chia hết cho n + 1 .
\(\Rightarrow\)4 chia hết cho n + 1 .
\(\Rightarrow\)n + 1 \(\in\)Ư (4) = { 1 ; 2 ; 4 }
Xét :
n + 1 = 1 \(\Rightarrow\)n = 0
n + 1 = 2 \(\Rightarrow\)n = 1
n + 1 = 4 \(\Rightarrow\)n = 3
Vậy n thuộc { 0 ; 1 ; 3 }
a)Ta có:\(4n+5⋮n\)
\(\Rightarrow5⋮n\)
\(\Rightarrow n\in1;5\)\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n=1;5\)
b)38-3n\(⋮n\)
\(\Rightarrow38⋮n\)
\(\Rightarrow n\inƯ\left(38\right)\)
c)\(3n+4⋮n-1\)
\(\Rightarrow3n-1+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1=1;5\)
\(\Rightarrow n\in2;6\)
d)\(2n+1⋮16-3n\)
a: =>n-1+5 chia hết cho n-1
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{2;0;6;-4\right\}\)
b: =>n^2+2n+1-4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: =>3n-6+5 chiahết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
a,(n+4) \(⋮\) (n-1) \(\Leftrightarrow\) n -1 + 5 \(⋮\) (n-1) \(\Leftrightarrow\) 5 \(⋮\) n - 1 \(\Leftrightarrow\) n-1 \(\in\) { -5; -1; 1; 5} \(\Leftrightarrow\)n\(\in\){-4;0;2;6}
b,Theo Bezout n2 +2n - 3 \(⋮\) n + 1 \(\Leftrightarrow\) (-1)2 + 2(-1) - 3 \(⋮\) n+1
\(\Leftrightarrow\) -4 \(⋮\) n+1 \(\Leftrightarrow\) n+1 \(\in\) { -4; -1; 1; 4} \(\Leftrightarrow\) n \(\in\) { -5; -2; 0; 3}
c, 3n -1 \(⋮\) n-2 \(\Leftrightarrow\) 3(n-2) + 5 \(⋮\) n-2 \(\Leftrightarrow\) 5 \(⋮\) n-2 \(\Leftrightarrow\) n-2 \(\in\) { -5; -1; 1; 5}
n \(\in\) { -3; 1; 3; 7}
d, 3n + 1 \(⋮\) 2n - 1
\(\Leftrightarrow\)2.(3n+1) \(⋮\) 2n -1
\(\Leftrightarrow\) 6n + 2 \(⋮\) 2n - 1
\(\Leftrightarrow\) 6n - 3 + 5 \(⋮\) 2n-1
\(\Leftrightarrow\) 3.(2n-1) + 5 \(⋮\) 2n-1
\(\Leftrightarrow\) 5 \(⋮\) 2n - 1
\(\Leftrightarrow\) 2n - 1 \(\in\) { -5; -1; 1; 5}
\(\Leftrightarrow\) n \(\in\) { -2; 0; 1; 3}
a, 4n + 5 ⋮ n ( n \(\in\) N*)
5 ⋮ n
n \(\in\)Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 38 - 3n ⋮ n (n \(\in\) N*)
38 ⋮ n
n \(\in\) Ư(38)
38 = 2.19
Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}
Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}
c, 3n + 4 ⋮ n - 1 ( n \(\in\) N; n ≠ 1)
3(n - 1) + 7 ⋮ n - 1
7 ⋮ n -1
n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
lập bảng ta có:
n - 1 | -7 | -1 | 1 | 7 |
n | -6 (loại) | 0 | 2 |
8 |
Theo bảng trên ta có n \(\in\) {0 ;2; 8}
4n+5 \(⋮\) n
Vì 4n \(⋮\) n nên 5 \(⋮\) n
\(\Rightarrow n\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Vậy:.............
a: =>5 chia hết cho n
=>\(n\in\left\{1;-1;5;-5\right\}\)
b: =>38 chia hết cho n
=>\(n\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)
c: =>3n-3+7 chia hết cho n-1
=>\(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
d: =>6n-3 chia hêt cho 3n-16
=>6n-32+29 chia hết cho 3n-16
=>\(3n-16\in\left\{1;-1;29;-29\right\}\)
hay \(n\in\left\{\dfrac{17}{3};5;15;-\dfrac{13}{3}\right\}\)
a) 3n + 2 chia hết cho n - 1
\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1
\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1
\(\Rightarrow\) 5 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}
\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4
\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4
\(\Rightarrow\) 36 chia hết cho n - 4
\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1
\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1
\(\Rightarrow\) 2 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}
\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}
\(3n-4=3n+3-7=3\left(n+1\right)-7⋮\left(n+1\right)\Leftrightarrow7⋮\left(n+1\right)\)
\(\Leftrightarrow n-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-6,0,2,8\right\}\).