Cho tam giác ABC có AB=AC. Tia phân giác goác BAC cắt BC tại D. Chứng minh:
a, Tam giác ABD= tam giác ACD
b, AD là đường trung trực của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
=>AD⊥BC
mà d//BC
nên AD⊥d
a) Xét ΔΔABD và ΔΔACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
⇒Δ⇒ΔABD = ΔΔACD (c.c.c)
b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒\(\widehat{BAD}\)=\(\widehat{CAD}\) (2gocs tương ứng )
⇒ AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )
mà \(\widehat{ADB}\) + \(\widehat{ADC}\)=18001800( 2 góc kề bù )
⇒\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900
⇒ AD ⊥ BC
Lại có: d // BC (gt) ⇒ AD ⊥ d
a: Xét ΔABD và ΔAMD có
AB=AM
góc BAD=góc MAD
AD chung
Do đó; ΔABD=ΔAMD
b: Xét ΔDBN và ΔDMC có
góc DBN=góc DMC
DB=DM
góc BDN=góc MDC
Do đó; ΔDBN=ΔDMC
=>BN=MC
c: Xét ΔANC có AB/BN=AM/MC
nên BM//CN
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD