Cho tam giác MNP vuông tại M. Đường phân giác NI kẻ IK vuông góc với NP tại K. Cm:
a) MI = IK
b) NI là đường trung trực của MK
c) IP > IM
d) Gọi O là giao điểm của p/g góc MNP và góc MPN. Tính góc NOP
Vẽ hình lun nhaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:
IN chung
MNI = KNI (do NI là phân giác của ∠MNP)
⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)
b) ∆IKP vuông tại K
IP là cạnh huyền nên IP lớn nhất
IK < IP (1)
Do ∆IMN = ∆IKN (cmt)
⇒ MI = IK (2)
Từ (1) và (2)⇒ MI < IP
c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:
IM = IK (cmt)
∠PIK = ∠MIQ (đối đỉnh)
∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)
⇒ KP = MQ (hai cạnh tương ứng) (3)
Do ∆IMN = ∆IKN (cmt)
⇒ MN = KN (hai cạnh tương ứng) (4)
Từ (3) và (4) ⇒ KN + KP = MN + MQ
NP = NQ
⇒ ∆NPQ cân tại N
Lại có NI là phân giác của ∠MNP
⇒ NI là phân giác của ∠QNP
⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)
⇒ ND ⊥ QP
a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co
NI chung
góc MNI=góc KNI
=>ΔNMI=ΔNKI
b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có
IM=IK
góc MIA=góc KIP
=>ΔIMA=ΔIKP
=>KI=IM
=>KI<IA
1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có
MK chung
góc IMK=góc AMK
=>ΔMIK=ΔMAK
=>góc IKM=góc AKM
=>KM là phân giác của góc AKI
2: KI=KA
KA<KP
=>KI<KP
3: Xét ΔMBP có
PI,BA là đường cao
PI cắt BA tại K
=>K là trực tâm
=>MK vuông góc PB
MI=MA
KI=KA
=>MK là trung trực của AI
=>MK vuông góc AI
=>AI//PB
a: NP=NI+IP
=5+7=12(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)
b: trung tâm là cái gì vậy bạn?
c: Nếu kẻ như thế thì H trùng với I rồi bạn
Sorry, nhưng bạn tự vẽ hình nha!
a.
Xét tam giác MIN vuông tại M và tam giác KIN vuông tại K có:
NI là cạnh chung
N1 = N2 (Ni là tia phân giác của tam giác MNP)
=> Tam giác MIN = Tam giác KIN (cạnh huyền - góc nhọn)
=> MI = KI (2 cạnh tương ứng)
b.
MI = KI (theo câu a)
NM = NK (tam giác MIN = tam giác KIN)
=> NI là đường trung trực của MK
c.
Tam giác KIP vuông tại K có:
IP > IK (IP là cạnh huyền )
mà IK = IM (theo câu a)
=> IP > IM
d.
Tam giác MNP vuông tại M có:
MPN + MNP = 90
=> MPN = 90 - MNP
MNP = 90 - MPN
OP là tia phân giác của MPN
\(\Rightarrow P1=P2=\frac{MPN}{2}=\frac{90-MNP}{2}\)
ON là tia phân giác của MNP
\(\Rightarrow N1=N2=\frac{MNP}{2}=\frac{90-MPN}{2}\)
Tam giác ONP có:
\(O+P1+N1=180\)
\(O+\frac{90-MNP}{2}+\frac{90-MPN}{2}=180\)
\(O+\frac{90-MNP+90-MPN}{2}=180\)
\(O+\frac{180-\left(MNP+MPN\right)}{2}=180\)
\(O+\frac{180-90}{2}=180\)
\(O+\frac{90}{2}=180\)
\(O+45=180\)
\(O=180-45\)
\(O=135\)