K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

19 tháng 2 2023

Kéo dài \(BM\) cắt \(AC\) tại \(K\)

Ta có: \(BK< AB+AK\) (bất đẳng thức t/g)

hay \(BM+MK< AB+AK\) \(\left(1\right)\)

Ta lại có: \(MC< MK+KC\) \(\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow BM+MK+MC< AB+AK+MK+KC\)

Hay \(BM+MC< AB+AK+KC\)

Hay \(BM+MC< AB+AC\)

19 tháng 2 2023

https://lazi.vn/edu/exercise/757051/cho-tam-giac-abc-va-diem-m-nam-trong-tam-giac-chung-minh-rang-mb-mc-ab-ac

`->` Cop giỏi nhỉ?

6 tháng 4 2022

ko nhìn thấy 

6 tháng 4 2022

là sao ?

 

26 tháng 2 2018

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

6 tháng 8 2017

. M A B C N 1 1 1 2 2 2 2 3 3 1

Trên nửa mặt phẳng bờ AC lấy điểm N sao cho \(\widehat{A}_1=\widehat{A}_2\)và AM=AN

Xét tam giác AMB và tam giác ANC có:

AB=AC(tan giác ABC cân)

\(\widehat{A}_1=\widehat{A}_2\)

AM=AN

=> tam giác AMB= tam giác ANC(c-g-c)

=>\(\widehat{M}_1=\widehat{ANC}\);BM=NC

Mà BM<MC

=>NC<MC

Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A

=>\(\widehat{M}_2=\widehat{N}_2\)(1)

Xét tam giác CNM có NC<MC

=>\(\widehat{M}_3< \widehat{N}_3\)(2)

Từ (1),(2)

=>\(\widehat{M}_2+\widehat{M}_3< \widehat{N}_2+\widehat{N}_3\)

=>\(\widehat{AMC}< \widehat{ANC}\)=>\(\widehat{ANC}>\widehat{AMC}\)

=>\(\widehat{AMB}>\widehat{AMC}\)(\(\widehat{ANC}=\widehat{AMB}\))

Trên nửa mặt phẳng bờ AC lấy điểm N sao cho ˆA1=ˆA2A^1=A^2và AM=AN

Xét tam giác AMB và tam giác ANC có:

AB=AC(tan giác ABC cân)

ˆA1=ˆA2A^1=A^2

AM=AN

=> tam giác AMB= tam giác ANC(c-g-c)

=>ˆM1=ˆANCM^1=ANC^;BM=NC

Mà BM<MC

=>NC<MC

Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A

=>ˆM2=ˆN2M^2=N^2(1)

Xét tam giác CNM có NC<MC

=>ˆM3<ˆN3M^3<N^3(2)

Từ (1),(2)

=>ˆM2+ˆM3<ˆN2+ˆN3M^2+M^3<N^2+N^3

=>ˆAMC<ˆANCAMC^<ANC^=>ˆANC>ˆAMCANC^>AMC^

=>ˆAMB>ˆAMCAMB^>AMC^(ˆANC=ˆAMBANC^=AMB^)

mk ko bt lm câu b nha ~ xl

c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)

=> DM = AD = AM

Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)

=> BD = MC (cặp cạnh tương ứng)

Ta có: DM = AM, BD = MC

=> DM : BM : BD = 3:4:5

=> tam giác BDM vuông tại M

=> góc AMB = 90o + 60o = 150o

26 tháng 2 2018

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.