K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

Gọi d là ƯCLN ( 2n+3 ; 3n+4 )

=> 2n+3 & 3n+4 chia hết cho d ; ( 3 ; 2 ) = 1

=> 3(2n+3) - 2(3n+4) chia hết cho d

=> 6n + 9 - 6n - 8 chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)

Vì d lớn nhất => d = 1

=> \(\frac{2n+3}{3n+4}\) tối giản             ( ĐPCM )

16 tháng 4 2016

gọi d là UCLN(2n+3;3n+4)

ta có:

[3(2n+3)]-[2(3n+4)] chia hết d

=>[6n+9]-[6n+8] chia hết d

=>1 chia hết d

=>d=1

=>A tối giản

22 tháng 3 2021

đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z

suy ra (2n+3)chia hết cho (kí hiệu) d

           (3n+4)chia hết cho d

suy ra 3.(2n + 3)chia hết cho d

           2.(3n +4)chia hết cho d

suy ra 3.2n+3.3chia hết cho d

           2.3n+2.4chia hết cho d

suy ra 6n+9 chia hết cho d

          6n +8 chia hết cho d

suy ra (6n+9)-(6n+8)chia hết cho d

suy ra 1chia hết cho d

 suy ra d =1

vậy 2n+3/3n+4

22 tháng 3 2021

chu mi la , mai mik ik hok ùi ,chu mi la

5 tháng 3 2017

kích nha

AH
Akai Haruma
Giáo viên
27 tháng 7

Lời giải:

Giả sử phân số đã cho không tối giản.
Gọi $p$ là ước nguyên tố chung của của $n^3+2n, n^4+3n^2+1$

$\Rightarrow n^3+2n\vdots p$
$\Rightarrow n(n^2+2)\vdots p$

$\Rightarrow n\vdots p$ hoặc $n^2+2\vdots p$.

Nếu $n\vdots p$. Kết hợp với $n^4+3n^2+1\vdots p\Rightarrow 1\vdots p$

$\Rightarrow p=1$ (không tm vì $p$ là snt) 

Nếu $n^2+2\vdots p$.

Kết hợp với $n^4+3n^2+1\vdots p$

$\Rightarrow n^2(n^2+2)+(n^2+2)-1\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (không tm vì $p$ là snt)

Vậy điều giả sử không đúng.

$\Rightarrow$ phân số đã cho tối giản.

23 tháng 4 2017

Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1

Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:

\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)

\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)

Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)

\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)

Vì  \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.

Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.

23 tháng 4 2017

Gọi d là UCLN của 2n +1 và 3n+2

2n+1\(⋮\)d

\(3n+2⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d

\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)

19 tháng 2 2018

Gọi d là ƯCLN (2n+3, 3n+4) (d\(\in\)N*)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+3}{3n+4}\)là phân số tối giản

19 tháng 2 2018

Gọi \(ƯCLN\left(2n+3;3n+4\right)\) là \(d\)

\(\Rightarrow\) \(\left(2n+3\right)⋮d\) và \(\left(3n+4\right)⋮d\)

\(\Rightarrow\) \(3\left(2n+3\right)⋮d\)và \(2\left(3n+4\right)⋮d\)

\(\Rightarrow\)\(\left(6n+9\right)⋮d\)  và \(\left(6n+8\right)⋮d\)

\(\Rightarrow\)\(\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n+9-8\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

Suy ra \(ƯCLN\left(2n+3;3n+4\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+3}{3n+4}\) là phân số tối giản 

6 tháng 5 2016

Gọi UCLN(2n + 1 ; 3n + 2) = d

2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d

3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d

=> [(6n + 4) - (6n + 3)] chia hết cho d

1 chia hết cho d => d = 1

Vì UCLN(2n + 1 ; 3n + 2) = 1

Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)

6 tháng 5 2016

goij d là ước chung của 2n +1 và 3n+2

2n+1chia hết cho d => 3(2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n+2 chia hết cho d=> 2(3n +2)chia hết cho d => 6n + 4 chia hết cho d (2)

lấy (2) trừ (1) ta có 1 chia hết cho d vậy d=cộng trừ 1

nên phân số đã cho tối giản

 

 

30 tháng 4 2019

                                                Lời giải:

Gọi d là ƯCLN\((2n+1,3n+2)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

=> \(\hept{\begin{cases}3(2n+1)⋮d\\2(3n+2)⋮d\end{cases}}\)

=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

=> \((6n+4)-(6n+3)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

Vậy phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản