Với giá trị nào của biến thì biểu thức sau có giá trị nhỏ nhất. Tìm giá trị đó:
A = lx-3l + y2 – 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-3\right|+y^2-10\)
\(A_{min}\Leftrightarrow\left|x-3\right|+y^2-10\)bé nhất
\(\Leftrightarrow\left|x-3\right|+y^2\)bé nhất
\(\Leftrightarrow\left|x-3\right|\)bé nhất và \(y^2\)bé nhất
Vì: \(\left|x-3\right|\ge0\)
\(y^2\ge0\)
\(\Rightarrow A_{min}\Leftrightarrow\hept{\begin{cases}x-3=0\Rightarrow x=3\\y^2=0\Rightarrow y=0\end{cases}}\)
Tìm giá trị thì thay số tìm được vào là ra
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Với giá trị nào của x; y thì biểu thức: A=lx- yl+l x+ 1l+ 2016 đạt giá trị nhỏ nhất. Tìm giá trị đó!
Vì |x-y|\(\ge\)0 với mọi x,y
|x+1|\(\ge\)0 Với mọi x
\(\Rightarrow\)|x-y|+|x+1|\(\ge\)0 Với mọi x,y
\(\Rightarrow\)|x-y|+|x+1|+2016\(\ge\)2016 với mọi x,y
\(\Rightarrow\)A\(\ge\)2016 với mọi x,y
Dấu '=' xảy ra\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x=0-1=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-1-y=0\\x=-1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}y=-1-0=-1\\x=-1\end{cases}}\)
Vậy Min A=2016\(\Leftrightarrow\)x=-1,y=-1
Khi x=3; và y=0 thì A đạt GTNN là -10