Biết b>a>0 và 3a^2 + b^2=4ab. Tính a-b/a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a^2 + b^2 - 4ab = 0
<=> a^2 - 2ab + b^2 + 2a^2 - 2ab = 0
<=> (a-b)(3a-b) = 0
=> a = b hoặc a = b/3
Mà b>a>0 => a = b/3
Thế vào A ta có: (b/3 - b) / (b/3 + b)
Rút gọn ta được: A = (1/3 - 1) / (1/3 + 1) = -1/2
Ta có: \(3a^2+b^2=4ab\Rightarrow4a^2-4ab+b^2-a^2=0\Rightarrow\left(2a-b\right)^2-a^2=0\)
\(\Rightarrow\left(2a-b-a\right)\left(2a-b+a\right)=0\Rightarrow\left(a-b\right)\left(3a-b\right)=0\)
Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}a-b=0\\3a-b=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=b\\3a=b\end{array}\right.\)
theo đề ra thì b>a>0 => không xảy ra trường hợp a=b.
\(\Rightarrow\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=-\frac{1}{2}\)
P/s: Không biết cách trình bày có đc không a~
Ta có: 3a2 + b2 = 4ab
<=> 3a2 + b2 - 4ab = 0
<=> a2 + b2 - 2ab + 2a2 - 2ab = 0
<=> (a - b)(3a - b) = 0 <=> a = b/3 (a - b = 0 loại vì a = b)
=> B = \(\dfrac{a-b}{a+b}\)= \(\dfrac{\dfrac{1}{3}b-b}{\dfrac{1}{3}b+b}\)= \(-\dfrac{2}{3}b:\dfrac{4}{3}b\) = \(-\dfrac{1}{2}\).
Ta có: \(10a^2-3b^2+ab=0\Leftrightarrow10a^2+6ab-5ab-3b^2=0\)\(\Leftrightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\Leftrightarrow\left(2a-b\right)\left(5a+3b\right)=0\Leftrightarrow\orbr{\begin{cases}2a-b=0\\5a+3b=0\end{cases}}\)
\(\Leftrightarrow2a=b\)hoặc \(5a=-3b\)( không thoả mãn do b>a>0)
Tthay b=2a vào M ta có: \(M=\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=\frac{0}{a}+\frac{9a}{5a}=0+\frac{9}{5}=\frac{9}{5}\)