cho tam giác ABC vuông ở A.Gọi H là hình chiếu của nđiểm B trên đường phân giác CD của góc C( D thuộc AB).Dựng điểm E sao cho H là trung điểm của DE c/m
a tam giác BED cân
b góc CEB=góc ADC và góc EBH= góc ACD
c, BEvuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBDH vuông tại H và ΔBEH vuông tại H có
BH chung
DH=EH(H là trung điểm của DE)
Do đó: ΔBDH=ΔBEH(hai cạnh góc vuông)
Suy ra: \(\widehat{BDH}=\widehat{BEH}\)(hai góc tương ứng)
mà \(\widehat{BDH}=\widehat{ADC}\)(hai góc đối đỉnh)
và \(\widehat{CEB}=\widehat{BEH}\)
nên \(\widehat{CEB}=\widehat{ADC}\)(đpcm)
Ta có: ΔBDH=ΔBEH(cmt)
nên \(\widehat{DBH}=\widehat{EBH}\)(hai góc tương ứng)(1)
Xét ΔADC vuông tại A và ΔHDB vuông tại H có
\(\widehat{ADC}=\widehat{HDB}\)(hai góc đối đỉnh)
Do đó: ΔADC\(\sim\)ΔHDB(g-g)
Suy ra: \(\widehat{ACD}=\widehat{HBD}\)(hai góc tương ứng)(2)
Từ (1) và (2) suy ra \(\widehat{EBH}=\widehat{ACD}\)(Đpcm)
a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE
a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE