chung minh da thuc f(x) = x^8 - x^5 + x^2 +1 vo nghiem
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
KV
0
KV
2
TL
0
PT
0
BT
15 tháng 5 2017
Ta có:
x2-10x+26 = (x2-10x+25)+1=(x-5)2+1\(\ge\)1 với mọi x
=> Đa thức x2-10x+26 vô nghiệm với mọi x
LH
15 tháng 5 2017
Ta có: x2 -10x + 26 = x2 -5x -5x +25 +1 = x(x-5)-5(x-5) +1 = (x-5)2 +1
Mà \(\left(x-5\right)^2\ge0\)nên \(\left(x-5\right)^2+1\ge1\)
\(\Rightarrow\left(x-5\right)^2+1\ne0\)
Vậy đa thức trên không có nghiệm
MV
1
Giả sử f(x) tồn tại giá trị nghiệm n bất kì nào đó ( n\(\in\) R )
Khi đó f(x) = x8+ x2 - x5 +1= 0 (1)
Xét các trường hợp của x5, ta có:
TH1: x5 là số âm \(\Rightarrow\) x8+ x2 - x5 +1 = x8+ x2 - (- x5) +1 = x8+ x2 +x5+ 1 luôn lớn hơn 0 ( trái với 1)
TH2 : x5 là số dương \(\Rightarrow\) x8+ x2 - x5 +1=x8+ x2 - x5 +1 mà x8+x2+1 luôn lớn hơn x5 nên x8+ x2 - x5 +1 luôn lớn hơn 0 ( trái với 1)
\(\Rightarrow\) không tồn tại giá trị n nào của x để x8+ x2 - x5 +1= 0 , như vậy điều giả sử là sai. Vậy đa thức
x8+ x2 -x5 +1 vô nghiệm
\(x^8-x^5+x^2+1=\left(x^4\right)^2-2.\frac{1}{2}.x^4.x+\left(\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1=\left(x^4-\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1>0\)
\(\Rightarrow\)vô nghiệm