K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

\(ĐKXĐ:\left\{{}\begin{matrix}x\ne0\\x\ne1\\x\ne2\end{matrix}\right.\)

\(\dfrac{1}{x-2}+\dfrac{1}{x-1}>\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x-1+x-2}{\left(x-1\right)\left(x-2\right)}>\dfrac{1}{x}\\ \Leftrightarrow\dfrac{2x-3}{x^2-3x+2}>\dfrac{1}{x}\\ \Leftrightarrow x\left(2x-3\right)>x^2-3x+2\\ \Leftrightarrow2x^2-3x>x^2-3x+2\\ \Leftrightarrow x^2>2\\ \Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< -\sqrt{2}\end{matrix}\right.\)

5 tháng 4 2017

a) Đkxđ: \(x\ne1,x\ne0\)

x+1x1+2>x1x2x1+2>1xx+1x1+2>x1x2x1+2>1x

2x1+1x+2>02x+x1+2(x2x)(x1)x=2x2+x1(x1)(x)>02x1+1x+2>02x+x1+2(x2x)(x1)x=2x2+x1(x1)(x)>0

Tử {delta =9}

1<x<12T<0

0<x<1M<0

Nghiệm BPT là

[x<10<x<12 hoặc x>1

17 tháng 1 2019

\(Giải:\)

\(ĐK:x\ne\left(-2\right);x\ne\left(-1\right)\)

\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\Leftrightarrow\frac{x^2+2x+2}{x+1}>\frac{x^2+3x+3}{x+2}\)

\(\Leftrightarrow\frac{x^2+2x+1}{x+1}+\frac{1}{x+1}-\frac{x^2+3x+2+1}{x+2}>0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{x+1}-\frac{\left(x+1\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}-\frac{1}{x+2}>0\)

\(\Leftrightarrow x+1-x-1+\frac{1}{x+1}-\frac{1}{x+2}>0\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}>0\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{\left(x+1\right)\left(x+2\right)}>0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}hoặc\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)

\(+,\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>\left(-2\right)\)

\(+,\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Rightarrow x< \left(-2\right)\)

BPT đã được giải quyết

13 tháng 4 2017

\(\Leftrightarrow\dfrac{1}{x-1}>\dfrac{1}{x-2}-\dfrac{1}{x+2}=\dfrac{\left(x+2\right)-\left(x-2\right)}{x^2-4}=\dfrac{4}{x^2-4}\)\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{4}{x^2-4}>0\Leftrightarrow\dfrac{x^2-4-4x+4}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}>0\)

\(\Leftrightarrow A=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}>0\)

Điều kiện tồn tại A

\(\left\{{}\begin{matrix}x\ne2\\x\ne1\\x\ne-2\end{matrix}\right.\) \(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+2\right)}\)

\(\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x>1\)(1)

\(\left\{{}\begin{matrix}x< 0\\-2< x< 1\end{matrix}\right.\) \(\Rightarrow-2< x< 0\)(2)

từ (1)&(2)kết luận\(\Rightarrow\left[{}\begin{matrix}-2< x< 0\\x>1\end{matrix}\right.\)

7 tháng 2 2022

ĐKXĐ: \(x\ne1,-1\)

Ta có: \(\dfrac{x-2}{x+1}\ge\dfrac{3x+2}{x-1}-2\)

\(\dfrac{x-2}{x+1}\ge\dfrac{3x+2-2\left(x-1\right)}{x-1}\)

\(\dfrac{x-2}{x+1}-\dfrac{3x+2-2x+2}{x-1}\ge0\)

\(\dfrac{x-2}{x+1}-\dfrac{x+4}{x-1}\ge0\)

\(\dfrac{\left(x-2\right)\left(x-1\right)-\left(x-4\right)\left(x+1\right)}{x^2-1}\ge0\)

\(\dfrac{x^2-3x+2-x^2+3x+4}{x^2-1}\ge0\)

\(\dfrac{6}{x^2-1}\ge0\)

\(\Rightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)(TM)

7 tháng 2 2022

\(BPT\Leftrightarrow\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\ge\dfrac{\left(3x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow x^2-x-2x+2-3x^2-3x-2x-2-2x^2-2\ge0\)

\(\Leftrightarrow-4x^2-8x-2\ge0\)

\(\Leftrightarrow x^2+2x+\dfrac{1}{2}\ge0\)

\(\Leftrightarrow\left(x+1\right)^2-\dfrac{1}{2}\ge0\)

Vậy bất phương trình luôn đúng \(\forall x\).

10 tháng 4 2021

\(\dfrac{15x-2}{4}-\dfrac{x^2+1}{3}>\dfrac{x\left(1-2x\right)}{6}+\dfrac{x-3}{2}\\ \Leftrightarrow3\left(15x-2\right)-4\left(x^2+1\right)>2x\left(1-2x\right)+6\left(x-3\right)\\ \Leftrightarrow45x-6-4x^2-4>2x-4x^2+6x-18\\ \Leftrightarrow45x-6x-2x>6+4-18\\ \Leftrightarrow37x>-8\\ \Leftrightarrow x>-\dfrac{8}{37}\)

10 tháng 4 2021

\(\dfrac{3\left(15x-2\right)}{12}-\dfrac{4\left(x^2+1\right)}{12}>\dfrac{2x\left(1-2x\right)}{12}+\dfrac{6\left(x-3\right)}{12}\)

\(45x-6-\left(4x^2+4\right)>2x-4x^2+6x-18\)

\(45x-4x^2+4x^2-2x-6x>6+4-18\)

\(37x>-8\)

\(x>\dfrac{-8}{37}\)