K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A

13 tháng 10 2021

C

13 tháng 10 2021

Cho H.1. Công thức tính diện tích của hình chữ nhật là:

A. S = 4a                   B. S = 1/2(a + b)

 

C. S = ab.                   D. S = 2(a + b)

 

2 tháng 12 2018

bạn giải ra bài này chưa mình đang luyện thi casio nếu bạn biết hãy chỉ giúp mình nhá

12 tháng 9 2017

1) Ta có: S = BH x (BC + DA) : 2

+ BCKH là hình chữ nhật nên BC = KH = x

+ BH = x

+ AD = AH + HK + KD = 7 + x + 4 = 11 + x.

Vậy S = BH x (BC + DA) : 2 = x.(x + 11 + x) : 2 = x.(2x + 11) : 2.

2) S = SABH + SBCKH + SCKD

+ ABH là tam giác vuông tại H

⇒ SBAH = 1/2.BH.AH = 1/2.7.x = 7x/2.

+ BCKH là hình chữ nhật

⇒ SBCKH = x.x = x2.

+ CKD là tam giác vuông tại K

⇒ SCKD = 1/2.CK.KD = 1/2.4.x = 2x.

Do đó: S = SABH + SBCKH + SCKD = 7x/2 + x2 + 2x = x2 + 11x/2.

- Với S = 20 ta có phương trình:

Giải bài 6 trang 9 SGK Toán 8 Tập 2 | Giải toán lớp 8

Hai phương trình trên tương đương với nhau. Và cả hai phương trình trên đều không phải là phương trình bậc nhất.

2 tháng 4 2018
T . I . C . K cho mih nhắn tin rồi mình gửi đáp án
2 tháng 4 2018
k kết bn nhắn tin gửi cho
13 tháng 11 2018

S

Đ

S

Đ

2 tháng 1 2019

a) Hai tam giác vuông AHD và BDC có ∠ADH = ∠CBD (SLT)

⇒ ΔAHD ∼ ΔDCB (g.g)

b) Ta có S, R là trung điểm của HB và AH nên SR là đường trung bình của ΔABH ⇒ SR // AB

⇒ ∠HSR = ∠HBA (đồng vị)

Mà ∠HBA = ∠D1

⇒ HSR = ∠D1

Do đó ΔSHR ∼ ΔDCB (g.g)

c) Ta có SR // AB và SR = AB/2 (cmt), TD = CD/2

mà AB = CD và AB // CD (gt)

⇒ SR // DT và SR = DT

Do đó Tứ giác DRST là hình bình hành

d) Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o