Cho 2 đa thức: f(x)= x^3-2ax+a^2 và g(x)=x^4+(3a+1)*x+a^2, tìm a để f(1)=g(3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^3-2ax+a^2\)
\(\Rightarrow f\left(1\right)=1-2a+a^2\)
\(g\left(x\right)=x^3+\left(3a+1\right)x+a^2\)
\(\Rightarrow g\left(3\right)=27+\left(3a+1\right)3+a^2\)
Mà \(f\left(1\right)=g\left(3\right)\)
\(\Rightarrow1-2a+a^2=27+\left(3a+1\right)3+a^2\)
\(\Rightarrow1-2a=27+9a+3\)
\(\Rightarrow1-2a=30+9a\)
\(\Rightarrow-29=11a\)
\(\Rightarrow a=\dfrac{-29}{11}\)
Vậy \(a=\dfrac{-29}{11}\) thì \(f\left(1\right)=g\left(3\right)\)
f(3)=g(1)
nên \(1+3\left(3a+1\right)+a^2=1-2a+a^2\)
\(\Leftrightarrow1+9a+3=1-2a\)
=>11a=-3
hay a=-3/11
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).