cho p,p+20,p+40 là SNT. CM : p+80 là SNT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu p=2 => p+4=2+4=6 \(\div\) 2 ( Hợp số ) ( Loại )
+ Nếu p=3 => p+4 =3+4=7 ( SNT )
p+20=3+20=23 (SNT ) ( nhận )
+ Nếu p=3k+1 => p+20=3k+1+20=3k+21 \(\div\) 3 ( Hợp số )(Loại)
+ Nếu p = 3k + 2 => p+4=3k+2+4=3k+6 \(\div\) 3 ( Hợp số ) (loại)
Vậy : p=3
* Chú ý : \(\div\) : Chia hết
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)