CHO A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)
CHUNG MINH RANG A<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50
A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)
A<1-1/50
mà 1/50>0=>1-1/50<1<2
A<1-1/50<1<2
A<2
chúc học tốt
A=1+[\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)
ta có \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)
=>A<1+\(\left[\frac{1}{1.2}+.........+\frac{1}{49.50}\right]\)
=>A<1+\(\left[\frac{1}{1}-\frac{1}{50}\right]\)
=>A<1+\(\frac{49}{50}\)
=>A<\(\frac{99}{50}\) <2
=>A<2
K MÌNH NHA BÀI NÀY MÌNH GHI MỎI TAY LẮM
A=\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{50^2}\)
A<\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49\cdot50}\)
A<1+\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
A<1+\(\left(1-\frac{1}{50}\right)\)
A<1+\(\frac{49}{50}\)
=>A<2
Ta có A = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100
Suy ra 2A - A = ( 1 + 1/2 + 1/2^2 +...+ 1/2^99) - ( 1/2 + 1/2^2 +...+ 1/2^100 )
Suy ra A = 1 - 1/2^100 < 1
Vậy A < 1 ( ĐPCM)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha
Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)
còn phần ''b'' bạn hãy tách ra nha
dễ mà mình làm hoài hà bạn nhân A cho \(\frac{1}{3}\)rồi sau đó cộng A và \(\frac{1}{3}\times A\) lại tiếp theo tự tính
Ta có : A= 1/2^2 +1/3^2 +....+1/2012^2 +1/2013^2
=> A= 1/2.2 +1/3.3 +....+1/2012.2012 +1/2013.2013
Do :1/2.2< 1/1.2
1/3.3 <1/2.3
.................
1/2012.2012 <1/2011.2012
1/2013.2013< 1/2012.2013
=>1/2.2 +1/3.3 +...+1/2012.2012+1/2013.2013< 1/1.2 +1/2.3+...+1/2011.2012+1/2012.2013
=>A<1/1 -1/2 +1/2 -1/3+...+1/2011-1/2012+1/2012-1/2013
=>A<1/1-1/2013
=>A<2013/2013 -1/2013
=> A< 2012/2013
Vì 2012<2013=>2012/2013<1
mà A<2012/2013=>A<1
Vậy A<1
Áp dụng công thức \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\). Ta có:
\(\frac{1}{2^2}< 2-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
. . . . .
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
_________________________________________________
\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}=\frac{99}{50}\)
Vậy:A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2^{\left(đpcm\right)}\)
đặt A=1/2^2+1/3^2+1/4^2+...+1/100^2
B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1-\frac{1}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
\(A<\frac{1}{1\cdot2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}<1<2\)