\(\sqrt{16x^2-24x+9}=x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{16x^2+9-24x}-17=0\)
\(\Leftrightarrow\sqrt{16x^2+9-24x}=17\)
\(\Leftrightarrow16x^2-24x+9=289\)
\(\Leftrightarrow16x^2-24x-280=0\)
\(\Leftrightarrow16x^2-80x+56x-280=0\)
\(\Leftrightarrow16x\left(x-5\right)+56\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(16x+56\right)=0\)
\(\Leftrightarrow8\left(x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\2x+7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{-7}{2}\end{cases}}\)
Vậy ...
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\\frac{-1-\sqrt{5}}{4}\le x\le-\frac{1}{8}\end{matrix}\right.\)(Có thể chưa chính xác)
\(12x^2+16x+1=2\sqrt{24x^3+12x^2-6x}+4\sqrt{x^2-x}+4\sqrt{8x^3+9x^2+x}\)
Áp dụng AM-GM:
\(2\sqrt{24x^3+12x^2-6x}=2\sqrt{6x\left(4x^2+2x-1\right)}\le6x+\left(4x^2+2x-1\right)=4x^2+8x-1\left(1\right)\)
\(4\sqrt{x^2-x}=2\sqrt{1.\left(4x^2-4x\right)}\le4x^2-4x+1\left(2\right)\)
\(4\sqrt{8x^3+9x^2+x}=2\sqrt{\left(4x^2+4x\right)\left(8x+1\right)}\le\left(4x^2+4x\right)+\left(8x+1\right)=4x^2+12x+1\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\), ta có: \(VP\le VT\)
Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}4x^2+2x-1=6x\\4x^2-4x=1\\4x^2+4x=8x+1\end{matrix}\right.\)\(\Rightarrow4x^2-4x-1=0\)
\(\Rightarrow x=\frac{1\pm\sqrt{2}}{2}\) (t/m ĐKXĐ)
a: =>9(2x+1)=6(3-x)
=>3(2x+1)=2(3-x)
=>6x+3=6-2x
=>8x=3
=>x=3/8
b: =>-3x^2-2+3x^2-18x=-26
=>-18x=-24
=>x=4/3
\(a,\sqrt{x^2-9}=\sqrt{\left(x-3\right)\left(x+3\right)}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x+3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\ge-3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge3\end{matrix}\right.\)
\(b,\sqrt{49x^2-24x+4}=\sqrt{\left(7x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\) Căn thức có nghĩa \(\forall x\)
`a,` Điều kiện: `x^2 - 9 >=0 <=>` \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
`b,` Điều kiện: `49x^2-24x+4 = (7x-2)^2 >=0`.
`-> x in RR`.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(4x-3\right)^2-\left(x-2\right)^2=0\\x>=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(4x-3-x+2\right)\left(4x-3+x-2\right)=0\\x>=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-1\right)\left(5x-5\right)=0\\x>=2\end{matrix}\right.\Leftrightarrow x\in\varnothing\)