Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Học sinh tự chứng minh
b, DADB vuông tại D, có đường cao DH Þ A D 2 = AH.AB
c, E A C ^ = E D C ^ = 1 2 s đ E C ⏜ ; E A C ^ = K H C ^ (Tứ giác AKCH nội tiếp)
=> E D C ^ = K H C ^ => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm
Do AB là đường kính và D thuộc đường tròn
\(\Rightarrow\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ADB}=90^0\) hay tam giác ADB vuông tại D
Xét tam với vuông ADB với đường cao DH, áp dụng hệ thức lượng ta có:
\(AD^2=AH.AB\)
a: Xét tứ giác AHCK có \(\widehat{AHC}+\widehat{AKC}=90^0+90^0=180^0\)
nên AHCK là tứ giác nội tiếp
b: ta có: AHCK là tứ giác nội tiếp
=>\(\widehat{CHK}=\widehat{CAK}=\widehat{CAE}\left(1\right)\)
Xét (O) có
\(\widehat{CAE}\) là góc nội tiếp chắn cung CE
\(\widehat{CDE}\) là góc nội tiếp chắn cung CE
Do đó: \(\widehat{CAE}=\widehat{CDE}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{CHK}=\widehat{CDE}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//DE
a: góc AEB=góc AFB=90 độ
góc GHB+góc GEB=180 độ
=>GHBE nội tiếp
b: góc AFG+góc AHG=180 độ
=>AFGH nội tiếp
góc FEG=góc AKH
góc HEG=góc FBA
góc AKH=góc FBA
=>góc FEG=góc HEG
=>EG là phân giác của goc FEH
góc EFG=góc HKB
góc HFG=góc EAB
góc HKB=góc EAB
=>góc EFG=góc HFG
=>FG là phân giác của góc HFE
=>G là tâm đường tròn nội tiếp ΔFEH
Xét (O) có
\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AEB}=90^0\)
Xét tứ giác BEFI có
\(\widehat{BEF}+\widehat{FIB}=180^0\)
nên BEFI là tứ giác nội tiếp
hay B,E,F,I cùng thuộc 1 đường tròn
a, HS tự chứng minh
b, Từ giả thiết ta có AB là đường trung trực của CE => B C ⏜ = B E ⏜ = B F ⏜ = D E ⏜
c, Sử dụng mối liên hệ cung và dây