Toà nhà Bitexco cao nhất TP.HCM với chiều cao là 269m. Tại một thời điểm trong ngày nó có bóng dài 90m. Tính góc tạo bởi tia nắng và mặt đất tại thời điểm đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt trời chiếu các tia song song dẫn đến
AC//MP (1)
mặt khác tòa nhà và thanh sắt cùng vuông góc với mặt đất nên song song với nhau
=> AB//MN (2)
Từ (1) , (2)
=> \(\widehat{BAC}=\widehat{NMP}\)
=> Hai tam giác vuông BAC và NMP đồng dạng
=> \(\frac{BA}{MN}=\frac{BC}{NP}\)=> \(AB=\frac{MN.BC}{NP}=57,625.\frac{1,6}{0,2}=461\)
Vậy chiều cao tòa nhà là 461m
Do tòa nhà vuông góc với mặt đất nên ta có:
\(\Rightarrow tanx=\dfrac{4}{6}=\dfrac{2}{3}\)
Góc tạo bởi mặt trời và tòa nhà là:
\(tan^{-1}\dfrac{2}{3}\approx34^o\)
Vậy: ....
P/s:mình vẽ hình rồi đặt tên luôn cho tam giác.
Xét ΔABC và ΔMNP ta có
\(\widehat{ABC}=\widehat{MNP}=90^0\)
Vì toà nhà được chiếu ánh sáng cùng thời điểm \(\rightarrow\widehat{ACB}=\widehat{MPN}\)
⇒ ΔABC ∼ ΔMNP(gg )
⇒\(\dfrac{AB}{MN}=\dfrac{BC}{NP}hay\dfrac{AB}{3}=\dfrac{23}{65}\)
\(\Rightarrow AB=\dfrac{3.23}{6,5}=10,6\)(m)
Vậy toà nhà cao 10,6m
:v đề sai hay cậu sai đây nhỉ mà là 65 mà ta
với lại mình chưa hiểu lắm chỗ này á...
tỉ lệ thì đúng rồi mà lúc thay số vào lại là lạ à nhen:))
nếu cậu làm: \(\dfrac{AB}{MN}=\dfrac{BC}{NP}\)
ý cậu là AB là độ cao của toàn nhà, BC là bóng của toàn nhà;
MN là chiều cao cột sắt, NP là bóng của cột sắt (à mấy bài này cậu phải nêu cái này ra á không là trừ 0.25 điểm;))
như vậy thì AB=?, BC= 23 m, MN= 65m, NP= 3m nè thay vào thì được kết quả rất là lớn
Nên mình nghĩ là đề sai đó, mà làm sao mà
hai cái này nó tương đương được ha cậu, hay là mình chưa xem kĩ nhỉ?
MN đang là 65 thì thành 3, NP đang là 3 thì thành 65 cái này là cách biến đổi mới hả cậu ơi:(
mà mình thấy cậu làm bài nó hơi kì nhé:
Ủa vậy là 65 hay 6.5. Mình thấy số 6.5 cũng hợp lí mà dựa vào đâu cậu biết đó là số 6.5 mà tính đây? Hay thật đó!
Vậy là đề sai hay cậu sai nhỉ?
Gọi AC là chiều cao của cây, AB là bóng của cây trên mặt đất
Theo đề, ta có: AB vuông góc với AC tại A, AB=8,1m; \(\widehat{B}=55^0\)
Xét ΔABC vuông tại A có
\(tanB=\dfrac{AC}{AB}\)
=>\(AC=8.1\cdot tan55\simeq11,57\left(m\right)\)