Cho tam giác DEF có DE = DF. Gọi K là trung điểm của EF.
a) Chứng minh: ∆ = ∆ DEK DFK .
b) Chứng minh: DK là tia phân giác của góc EDF.
c) Giả sử 50o E = . Tính số đo góc F và góc EDF?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có
DE=DF
DH chung
=>ΔDHE=ΔDHF
b: ΔDHE=ΔDHF
=>góc EDH=góc FDH=40/2=20 độ
c: góc FKD=góc FHD=90 độ
=>FHKD nội tiếp
=>góc KDH=góc KFH
a/ Xét tam giác DKE và tam giác DKF
DE = DF (gt)
EK = FK (gt)
DK là cạnh chung
=> tam giác DKE = tam giác DKF (c.c.c)
b/ Nhớ sửa lại đề nha, phải là góc EDF
Ta có:
DE = DF (gt)
EK = FK (gt)
=> DK là tia phân giác góc EDF
c/ Ta có: DK là tia phân giác góc EDF (cmt)
EK = FK (gt)
=> DK vuông góc với EF
^-^ chúc bạn học tốt
Bài làm
a) Ta có: \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)
Mà \(\widehat{PEF}=\widehat{PED}\)( Do EP là tia phân giác )
=> \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)
=> \(\widehat{OEF}+\widehat{OED}=\widehat{DEF}\)
hay \(2.\widehat{OEF}=\widehat{DEF}\)
Lại có: \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)
Mà \(\widehat{DFO}=\widehat{OFE}\)( QF là tia phân giác của góc F )
=> \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)
hay \(\widehat{2DFO}=\widehat{DFE}\)
Xét tam giác DEF có:
\(\widehat{D}+\widehat{DEF}+\widehat{DFE}=180^0\)( Tổng ba góc trong tam giác )
hay \(60^0+2\widehat{OEF}+2\widehat{OFE}=180^0\)
=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=180^0-60^0\)
=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=120^0\)
=> \(\widehat{OEF}+\widehat{OFE}=120^0:2\)
=> \(\widehat{OEF}+\widehat{OFE}=60^0\)
Xét tam giác OEF có:
\(\widehat{OEF}+\widehat{OFE}+\widehat{EOF}=180^0\)
hay \(60^0+\widehat{EOF}=180^0\)
=> \(\widehat{EOF}=180^0-60^0=120^0\)
Vậy \(\widehat{EOF}=120^0\)
Xét tam giác DEF có:
EP là tia phân giác của góc E
FQ là tia phân giác của góc F
Mà hai tia phân giác này cắt nhau ở O
=> O là tâm của đường tròn nội tiếp tam giác.
=> OQ = OP
b) Để hai điểm P và Q cách đều đường thẳng EF của tam giác DEF <=> EQ = PF
# Học tốt #
a) Vì \(\Delta DEF\) cân tại D (gt).
\(\Rightarrow\widehat{E}=\widehat{F}\) (Tính chất tam giác cân).
Mà \(\widehat{E}=50^o\left(gt\right).\)
\(\Rightarrow\widehat{D}=180^o-\widehat{E}-\widehat{F}=80^o.\)
b) DO là phân giác \(\widehat{D}\) (gt).
\(\Rightarrow\widehat{EDO}\) \(=\) \(\dfrac{\widehat{D}}{2}\) \(=\) \(\dfrac{80^o}{\text{2}}\) \(=40^o.\)
c) Xét \(\Delta DEF\) cân tại D:
DO là phân giác \(\widehat{D}\) (gt).
\(\Rightarrow\) DO là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) O là trung điểm của EF.
d) Xét \(\Delta DEF\) cân tại D:
DO là phân giác \(\widehat{D}\) (gt).
\(\Rightarrow\) DO là đường cao (Tính chất tam giác cân).
\(\Rightarrow\) DO vuông góc với EF.
tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE
Xét tam giác KEF và tam giác HFE
có EF chung
góc EKF=góc EHF = 900
góc KEF=góc HFE (CMT)
suy ra tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)
suy ra EK = HF
mà DK+KE=DE, DH+HF=DF
lại có DE=DF (CMT)
suy ra KD=DH
b) xét tam giác DKO và tam giác DHO
có DO chung
góc DKO = góc DHO = 900
DK = DH (CMT)
suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)
suy ra góc KDO = góc HDO
suy ra DO là tia phân giác của góc EDF (1)
c) Vì DK = DH suy ra tam giác DKH cân tại D
suy ra góc DKH= góc DHK
suy ra góc DKH+ góc DHK + góc KDH = 1800
suy ra góc DKH=(1800 - góc KDH) :2 (2)
Tam giác DEF cân tại D
suy ra góc DEF + góc DFE + góc EDF = 1800
suy ra góc DEF = (1800 - góc KDH) :2 (3)
Từ (2) và (3) suy ra góc DKH = góc DEF
mà góc DKH đồng vị với góc DEF
suy ra KH // EF
d) Xét tam giác DEI và tam giác DFI
có DE = DF (CMT)
DI chung
EI = IF
suy ra tam giác DEI = tam giác DFI (c.c.c)
suy ra góc EDI = góc FDI
suy ra DI là tia phân giác của góc EDF (4)
Từ (1) và (4) suy ra DO trùng DI
hay ba điểm D, O, I thẳng hàng.
a: Xét ΔDEK và ΔDFK có
DE=DF
EK=FK
DK chung
Do đó: ΔDEK=ΔDFK
b: Ta có: ΔDEF cân tại D
mà DK là đường trung tuyến
nên DK là đường phân giác
c: \(\widehat{F}=\widehat{E}=50^0\)
\(\widehat{EDF}=180^0-2\cdot50^0=80^0\)