Viết thuật toán và chương trình pascal sau: Cho 5 số sau : 3, 1, 7, 9, 5. HÃy sắp xếp theo thứ tự tăng dần. (Thank you so much ) :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THAM KHẢO!
1.Thuật toán sắp xếp chèn (Insertion Sort):
def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j = i - 1
while j >= 0 and arr[j] > key:
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = key
return arr
A = [5, 8, 1, 0, 10, 4, 3]
sorted_A = insertion_sort(A)
print("Dãy A sau khi sắp xếp chèn:", sorted_A)
2. Thuật toán sắp xếp chọn (Selection Sort):
def selection_sort(arr):
for i in range(len(arr)):
min_idx = i
for j in range(i + 1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[i]
return arr
A = [5, 8, 1, 0, 10, 4, 3]
sorted_A = selection_sort(A)
print("Dãy A sau khi sắp xếp chọn:", sorted_A)
3.Thuật toán sắp xếp nổi bọt (Bubble Sort):
def bubble_sort(arr):
n = len(arr)
for i in range(n - 1):
for j in range(n - 1 - i):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
return arr
A = [5, 8, 1, 0, 10, 4, 3]
sorted_A = bubble_sort(A)
print("Dãy A sau khi sắp xếp nổi bọt:", sorted_A)
Uses crt;
Var k: array[1..10] of integer;
i,j,n: byte;
t: integer;
begin clrscr;
Readln(n);
For i:=1 to n do Begin
readln(k[i]);
end;
For i:=1 to n-1 do For j:=i+1 to n do
if k[j] <=k[i] then begin
t:= k[i];
k[i]:=M[j];
k[j]:=t; end;
For i:=1 to n do Write(k[i],';'); readln;
end.
a)
import time
def linear_search(arr, x):
"""
Tìm kiếm tuyến tính trong dãy arr để tìm giá trị x.
Trả về vị trí của x trong dãy nếu x được tìm thấy, -1 nếu không tìm thấy.
"""
n = len(arr)
for i in range(n):
if arr[i] == x:
return i
return -1
# Dãy số A
A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 11]
# Phần tử cần tìm kiếm
C = 9
# Bắt đầu đo thời gian
start_time = time.perf_counter()
# Tìm kiếm phần tử C trong dãy A
result = linear_search(A, C)
# Kết thúc đo thời gian
end_time = time.perf_counter()
if result != -1:
print(f"Phần tử {C} được tìm thấy tại vị trí {result} trong dãy A.")
else:
print(f"Phần tử {C} không có trong dãy A.")
print(f"Thời gian thực hiện thuật toán: {end_time - start_time} giây.")
b)
import time
def binary_search(arr, x):
"""
Tìm kiếm nhị phân trong dãy arr để tìm giá trị x.
Trả về vị trí của x trong dãy nếu x được tìm thấy, -1 nếu không tìm thấy.
"""
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == x:
return mid
elif arr[mid] < x:
left = mid + 1
else:
right = mid - 1
return -1
# Dãy số A đã được sắp xếp
A = [0, 1, 3, 5, 7, 9, 10, 11, 13, 16]
# Phần tử cần tìm kiếm
C = 9
# Bắt đầu đo thời gian
start_time = time.perf_counter()
# Tìm kiếm phần tử C trong dãy A bằng thuật toán tìm kiếm nhị phân
result = binary_search(A, C)
# Kết thúc đo thời gian
end_time = time.perf_counter()
if result != -1:
print(f"Phần tử {C} được tìm thấy tại vị trí {result} trong dãy A.")
else:
print(f"Phần tử {C} không có trong dãy A.")
print(f"Thời gian thực hiện thuật toán: {end_time - start_time} giây.")
-Thời gian thực hiện ở câu a là 8.99999,thời gian thực hiện ở câu b là 6,49999 giây.
#include <bits/stdc++.h>
using namespace std;
int a,b;
int main()
{
cin>>a>>b;
if (a<b) cout<<a<<" "<<b;
else cout<<b<<" "<<a;
}
1)
Var array:[1..1000] of integer;
i,n,t:integer;
Begin
Write('n = ');readln(n);
For i:=1 to n do
Begin
Write('Nhap so thu ',i,' = ');readln(a[i]);
End;
For i:=1 to n do
If a[i] > a[i+1] then
Begin
t:=a[i];
a[i]:=a[i+1];
a[i+1]:=t;
End;
Write('Sap xep tang dan ');
For i:=1 to n do write(a[i]:8);
Readln
End.
2)
Var array:[1..1000] of integer;
i,n,t:integer;
Begin
Write('n = ');readln(n);
For i:=1 to n do
Begin
Write('Nhap so thu ',i,' = ');readln(a[i]);
End;
For i:=1 to n do
If a[i] < a[i+1] then
Begin
t:=a[i];
a[i]:=a[i+1];
a[i+1]:=t;
End;
Write('Sap xep giam dan ');
For i:=1 to n do write(a[i]:8);
Readln
End.
Thuật toán tìm kiếm nhị phân thực hiện tìm kiếm một mảng đã sắp xếp bằng cách liên tục chia các khoảng tìm kiếm thành 1 nửa. Bắt đầu với một khoảng từ phần tử đầu mảng, tới cuối mảng. Nếu giá trị của phần tử cần tìm nhỏ hơn giá trị của phần từ nằm ở giữa khoảng thì thu hẹp phạm vi tìm kiếm từ đầu mảng tới giửa mảng và nguợc lại. Cứ thế tiếp tục chia phạm vi thành các nửa cho dến khi tìm thấy hoặc đã duyệt hết.
Thuật toán tìm kiếm nhị phân tỏ ra tối ưu hơn so với tìm kiếm tuyết tính ở các mảng có độ dài lớn và đã được sắp xếp. Ngược lại, tìm kiếm tuyến tính sẽ tỏ ra hiệu quả hơn khi triển khai trên các mảng nhỏ và chưa được sắp xếp.