cho hinh thang ABCD(AB//CD) . biet AB=2,5cm AD=3,5cm BD=5cm va goc DAB=DBC
cchung minh 2 tam giac ADB va BCD dong dang
tinh BC va CD
TINH TI SO DIEN TICH 2 tam giac ADB va BCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{AOB}=\widehat{COD}\) (đối đỉnh)
\(\widehat{OAB}=\widehat{OCD}\) (slt do AB // CD)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
b) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OC=\frac{OA.OD}{OB}=\frac{8}{3}\)cm
c) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{S_{OAB}}{S_{OCD}}=\left(\frac{AB}{CD}\right)^2=\frac{1}{4}\)
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
a) vì AB song song CD (gt) => góc ABD = góc BDC ( hai góc so le trong)
xét tam giác ABD và tam giác BDC có:
góc DAB = góc DBC(gt)
góc ABD = góc BDC (cmt)
=> tam giác ABD đồng dạng với tam giác BDC(g.g)
b) ta có tam giác ABD đồng dạng với tam giác BDC (cmt)
=> \(\frac{AB}{BD}\)= \(\frac{DB}{DC}\) (định nghĩa 2 tam giác đồng dạng)
=>BD2 = AB. DC
=> BD2 = 4 . 9= 36 =>BD = 6cm