K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2022
Ok Bạn Nhé

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

26 tháng 8 2021

26 tháng 8 2021

4 tháng 11 2021

a, Vì \(BC^2=AB^2+AC^2\) nên tg ABC vuông tại A

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\)

b, \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=30\left(cm^2\right)\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

=>AH=60/13(cm)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượtlấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.1.Chứng minh MN//BC2. Tính MN biết BC = 36 cmCâu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳngAD = 5 cm. Chứng minh ABD \= ACB [Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,AC = 20 cm. Tính DB và DC.Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và...
Đọc tiếp

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượt
lấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.
1.Chứng minh MN//BC
2. Tính MN biết BC = 36 cm
Câu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳng
AD = 5 cm. Chứng minh ABD \= ACB [
Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,
AC = 20 cm. Tính DB và DC.
Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH.
1.  Chứng minh BA2 = BH.BC.
2.  Tính độ dài cạnh AC khi biết AB = 30 cm, AH = 24 cm.
3.  Trên cạnh AC lấy điểm M sao cho CM = 10 cm, trên cạnh BC lấy điểm N sao cho CN
= 8 cm. Chứng minh tam giác CMN vuông.
4.  Chứng minh CM.CA = CN.CB
Câu 5. (7đ) Cho tam giác ABC nhọn và đường cao AH. Kẻ HI ⊥ AB và HK ⊥ AC.
1. Chứng minh AH2 = AI.AB.

2. Chứng minh 4AIK v 4ACB

3.  Đường phân giác của góc AHB cắt AB tại E. Biết EB/ AB = 2/ 5 . Tính tỉ số BI /AI
Câu 6.  Cho tam giác AOB cân tại O (O <b 90◦
) và hai đường cao AD, BE. Đường vuông
góc với OA tại A cắt tia OB tại C. Chứng minh:
1.  ED//AB.
2.  OB2 = OE.OC
3. AB là đường phân giác của DAC \.
4. (Chứng minh BD.OA = BC.OE

giúp mình với nhé :( cần gấp

0
17 tháng 10 2021

\(4AB=3BC\Leftrightarrow AB=\dfrac{3}{4}BC\)

Áp dụng HTL: \(AB^2=BH\cdot BC\Leftrightarrow\dfrac{9}{16}BC^2=\dfrac{12}{5}BC\Leftrightarrow BC\left(\dfrac{9}{16}BC-\dfrac{12}{5}\right)=0\\ \Leftrightarrow BC=\dfrac{12}{5}:\dfrac{9}{16}=\dfrac{64}{15}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{16}{5}\left(cm\right)\)

Áp dụng HTL và PTG: \(\left\{{}\begin{matrix}AC=\sqrt{BC^2-AB^2}=\dfrac{16\sqrt{7}}{15}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{28}{15}\left(cm\right)\end{matrix}\right.\)

 

17 tháng 10 2021

Minh cảm ơn bạn nha