Cho A= 1+2+2 mũ 2+......+2 mũ 50
Tính C= B-A trong đó B= 2 mũ 51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^2.x+2^3.x=51\)
\(\Leftrightarrow x\left(3^2+2^3\right)=51\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\)
Vậy
b) \(6^2.2-\left(84-3^2.x\right):7=69\)
\(\Leftrightarrow\left(84-3^2.x\right):7=3\)
\(\Leftrightarrow84-3^2.x=21\)
\(\Leftrightarrow3^2.x=63\)
\(\Leftrightarrow x=7\)
Vậy
a) Ta có: C=A+B
\(=x^2-2y^2+xy+1+x^2+y^2-x^2y^2-1\)
\(=2x^2-y^2-x^2y^2+xy\)
b) Ta có: C+A=B
nên C=B-A
\(=x^2+y^2-x^2y^2-1-x^2+2y^2-xy-1\)
\(=3y^2-x^2y^2-xy-2\)
\(A=1+2+2^2+2^3+...+2^{119}\)
\(2A=2+2^2+2^3+...+2^{120}\)
\(2A-A=\left(2+2^2+2^3+...+2^{120}\right)-\left(1+2+2^2+2^3+...+2^{119}\right)\)
\(A=2^{120}-1\)
Có \(120\)chia hết cho các số \(2,3,8,5\)nên \(A\)chia hết cho \(2^2-1=3,2^3-1=7,2^8-1=255=17.15,2^5-1=31\).
Suy ra đpcm.
\(A=1+2^1+2^2+...+2^{100}+2^{101}\)
\(=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)
\(=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)
\(=7\left(1+2^3+...+2^{99}\right)\)chia hết cho \(7\).
Ta có: \(1^2+3^2+5^2+...+2021^2\) tổng trên có \(\left(2021-1\right)\div2+1=1011\)số hạng
do đó \(1^2+3^2+5^2+...+2021^2\)là số lẻ nên \(a+b+c=1^2+2^2+3^2+...+2021^2\)là số lẻ.
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(\left(a+b+c\right)^2\)là số lẻ, \(2\left(ab+bc+ca\right)\)là số chẵn
nên \(a^2+b^2+c^2\)là số lẻ.
Cho a/b = b/c ( a,b,c khác 0) CM a mũ 2 + b mũ 2/ b mũ 2 + c mũ 2 = ( a+ 2018b) mũ 2/ (b+2018c) mũ 2
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{51}\)
\(\Rightarrow2A-A=2+2^3+2^4+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(C=B-A=2^{51}-2^{51}+1=1\)