K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2015

thay a = x cho dễ nhé

Ta có: 

4a/2 = 12b/2 = xc/2 = S     (S là diện tích tam giác)
 =>  a = 2 ; b = 6 ; c = 2S /x
Do x - y < z < x + y (bất đẳng thức trong tam giác)
 => S/2 - S/6 < 2S/x < S/2 + S/6 
 => 2S /6 < 2S /x < 2S/3 .  Mà x thuộc Z
=>  x = {4 ,5}

5 tháng 6 2015

cách 2:

 gọi a,b,c là độ dại 3 cạnh,ha,hb,hc là 3 đường cao tương ứng 
ha = 4 và hb = 12,ta tìm hc 
+ ta có 
S = 1/2*a.ha 
=>a = 2S/ha 
tương tự 
b = 2S/hb 
và 
c=2S/hc 
+ do ABC la 1 tam giác nên 
* a + b > c 
=> 2S/ha + 2S/hb > 2S/hc 
<> 1/hc < 1/4 + 1/12 = 1/3 
=> hc > 3 
* b + c > a 
=> 1/12 + 1/hc > 1/4 
<>1/hc > 1/6 
=> hc < 6 
do hc nguyên nên hc = 4 hoạc hc = 5

21 tháng 11 2021
Ba đường cao tâm giác AVC cô do dai 4,17,a biết a la đo.biet nhien.a=!
6 tháng 2 2016

Làm theo công thức nha bạn!!

1235689cm2

duyet di

( 12 + 4 ) : 2 = 8 cm 

Đúng 100% tớ làm rồi , tích tớ nhé Nguyễn Văn Duy

4 tháng 3 2016

x=4 hoặc x=5

5 tháng 3 2016

gọi a,b,c là độ dại 3 cạnh,ha,hb,hc là 3 đường cao tương ứng 
ha = 4 và hb = 12,ta tìm hc 
+ ta có 
S = 1/2*a.ha 
=>a = 2S/ha 
tương tự 
b = 2S/hb 
và 
c=2S/hc 
+ do ABC la 1 tam giác nên 
* a + b > c 
=> 2S/ha + 2S/hb > 2S/hc 
<> 1/hc < 1/4 + 1/12 = 1/3 
=> hc > 3 
* b + c > a 
=> 1/12 + 1/hc > 1/4 
<>1/hc > 1/6 
=> hc < 6 
do hc nguyên nên hc = 4 hoạc hc = 5

5 tháng 3 2016

cái này hình như thiếu đềhihi

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath