Cho a,b\(\in\)N sao cho:\(\frac{a+1}{b}\)+\(\frac{b+1}{a}\)\(\in N\)
Gọi d là UCLN(a,b).Chứng minh rằng:a+b\(\ge d^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a+1}{b}+\frac{b+1}{a}=\frac{a\left(a+1\right)}{ab}+\frac{b\left(b+1\right)}{ab}\)
\(=\frac{a\left(a+1\right)+b\left(b+1\right)}{ab}=\frac{a^2+b^2+a+b}{ab}\) là số tự nhiên nên \(\left(a^2+b^2+a+b\right)\) chia hết cho \(ab\)
Vì \(UCLN\left(a,b\right)=d\Rightarrow\)\(a\) chia hết cho \(d\) ; \(b\) chia hết cho \(d\)
\(\Rightarrow ab\) chia hết cho \(d^2\) và \(a^2\) chia hết cho \(d^2\) ; \(b^2\) chia hết cho \(d^2\)
\(\Rightarrow\left(a^2+b^2\right)\) chia hết cho \(d^2\)
Do đó:\(a^2+b^2+a+b\) chia hết cho \(d^2\)
\(a^2+b^2\) chia hết cho \(d^2\)
\(\Rightarrow a+b\) chia hết cho \(d^2\)
\(\Rightarrow a+b\ge d^2\left(đpcm\right)\)
Ta có: \(\frac{a+1}{a}+\frac{b+1}{b}=\frac{ab+a+b+ab}{ab}=2+\frac{a+b}{ab}\in Z\)
\(\Rightarrow\frac{a+b}{ab}\in Z\forall a,b>0\) nên \(\frac{a+b}{ab}\ge1\Rightarrow a+b\ge ab\)
Do d là ước a nên \(a⋮d\Rightarrow a\ge d>0\)
d là ước b nên \(b⋮d\Rightarrow b\ge d>0\)
Suy ra \(ad\ge d^2\Rightarrow a+b\ge d^2\Rightarrow\sqrt{a+b}\ge d\)
Điều phải chứng minh
\(P=\frac{a+1}{a}+\frac{b+1}{b}=2+\frac{1}{a}+\frac{1}{b}=2+\frac{a+b}{ab}\)
\(\hept{\begin{cases}a,b>0\\P\in Z\end{cases}\Rightarrow ab\le\left(a+b\right)}\)(*) a,b vai trò như nhau; g/s \(a\le b\Rightarrow d\le a\le b\Rightarrow d^2\le ab\)
Từ (*)\(\Rightarrow d^2\le ab\le\left(a+b\right)\Rightarrow d\le\sqrt{ab}\le\sqrt{a+b}\)
Đẳng thức chỉ xẩy ra khi a=b=2=> dpcm
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)
vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)
tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)
tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)
cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)
giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)
<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)
<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)
<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)
(đúng với mọi a,b,c >0) (2)
(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)