(2-x).(x+9)>0
Giúp mình với :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
\(< =>\left(x^2-9\right)^2-\left[3\left(x-3\right)\right]^2=0\)
\(< =>\left(x^2-9\right)^2-\left(3x-9\right)^2=0\)
\(< =>\left(x^2-9+3x-9\right)\left(x^2-9-3x+9\right)=0\)
\(< =>\left(x^2+3x-18\right)\left(x^2-3x\right)=0\)
\(=>\left[{}\begin{matrix}x^2+3x-18=0\\x^2-3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}\left(x+6\right)\left(x-3\right)=0\\x\left(x-3\right)=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=-6\\x=3\\x=0\end{matrix}\right.\)
\(a,\Leftrightarrow x^2-2x-x^2+5x=6\\ \Leftrightarrow3x=6\\ \Leftrightarrow x=2\)
\(b,\Leftrightarrow x^2-6x+9-x+9=0\\ \Leftrightarrow x^2-7x+18=0\\ \Leftrightarrow\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{23}{4}=0\\ \Leftrightarrow\left(x-\dfrac{7}{2}\right)^2+\dfrac{23}{4}=0\left(vôlí\right)\)
Vì \(x^2+1>0\) nên \(x^2-4=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)
\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)
\(\Leftrightarrow4-x=0\)
hay x=4
Vậy: S={4}
$⇔x^2-2x+1+x-x^2+3=0$
$⇔-x=-4$
$⇔x=4$
Vậy phương trình đã cho có tập nghiệm S={4}
\(a,\Rightarrow4x\left(x^2-9\right)=0\\ \Rightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\\ \Rightarrow\left(2x-6\right)\left(4x-4\right)=0\\ \Rightarrow2\left(x-3\right)4\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
a) \(\Rightarrow4x\left(x^2-9\right)=0\)
\(\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(4x-4\right)=0\)
\(\Rightarrow8\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ
c: =>x+2>0
hay x>-2
d: =>-4<=x<=3
e: =>\(x\in\varnothing\)
f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)
Đây là lớp 6 nhé ko phải lớp 8 đâu. Tại mình ghi nhầm
=> x< 2 và x>-9