ho tam giác DEF vuông tại D, đường cao DS, EF=5cm, DE=2DF
a) tính DE, DS, SE
b) Tính M=sinE+ 2cosF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(DE^2+DF^2=EF^2\)
\(\Leftrightarrow DF^2=5^2-3^2=16\)
hay DE=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền EF, ta được:
\(DK\cdot FE=DE\cdot DF\)
\(\Leftrightarrow DK\cdot5=3\cdot4=12\)
hay DK=2,4(cm)
Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:
\(DE^2=DK^2+EK^2\)
\(\Leftrightarrow EK^2=3^2-2.4^2=3.24\)
hay EK=1,8(cm)
Ta có: EK+FK=EF(K nằm giữa E và F)
nên FK=5-1,8=3,2(cm)
Áp dụng hệ thức lượng:
\(DE^2=EK.EF\Rightarrow EK=\dfrac{DE^2}{EF}=1,8\left(cm\right)\)
\(KF=EF-EK=3,2\left(cm\right)\)
\(DK^2=EK.KF\Rightarrow DK=\sqrt{EK.KF}=2,4\left(cm\right)\)
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
a, Ta có ∆DEF vuông vì D E 2 + D F 2 = F E 2
b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm
K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '
d, Tìm được DM=3cm, FM=5cm và EM = 3 5 cm
e, f, Ta có: sin D F K ^ = D K D F ; sin D F E ^ = D E E F
=> D K D F = D E E F => ED.DF = DK.EF
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
Áp dụng định lí py - ta - go , ta có :
EF2 = ED2+DF2 = 122 + 52
= 144 + 25 = 169
EF2 = √169 = 13 ( cm )
Xét tam giác DEF vuông tại D
Có: \(DE^2+DF^2=EF^2\left(pitago\right)\)
Thay số\(12^2+5^2=EF^2\)
144+25=EF^2
EF^2=169
EF^2=13^2
=>EF=13
Chúc bn hok tốt
\(\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\Leftrightarrow DF=\dfrac{4}{5}EF\)
\(\Leftrightarrow DF=24\left(cm\right)\)
\(\Leftrightarrow FE=30\left(cm\right)\)
\(\Leftrightarrow DI=14.4\left(cm\right)\)
a: DH=căn DE^2-EH^2=12cm
Xét ΔDEF vuông tại D có DH là đường cao
nên DE^2=EH*EF
=>EF=15^2/9=25cm
DF=căn 25^2-15^2=20cm
HF=25-9=16cm
b: C=15+20+25=40+20=60cm
S=1/2*15*20=10*15=150cm2
DM=EF/2=25/2=12,5cm
c: Xét ΔEDF có HK//DF
nên HK/DF=EH/EF
=>HK/20=9/25
=>HK=180/25=7,2cm
đổi 30dm=3cm
Theo định lý py ta go có
DE2+DF2=EF2
=>25+9=EF2
=>EF2=34
=>EF = căn 34 nhé
Đổi: \(30dm=300cm\)
Áp dụng định lí Pitago vào \(\Delta DEF\left(\widehat{D}=90^o\right)\) có:
\(EF^2=DE^2+DF^2\)
\(\Rightarrow EF=\sqrt{5^2+300^2}=5\sqrt{3601}\left(cm\right)\)
Số xấu vậy?
a. Áp dụng Pitago:
\(DE^2+DF^2=EF^2\)
\(\Rightarrow\left(2DF\right)^2+DF^2=25\)
\(\Rightarrow DF^2=5\)
\(\Rightarrow DF=\sqrt{5}\left(cm\right)\)
\(\Rightarrow DE=2DF=2\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức lượng:
\(DS.EF=DE.DF\Rightarrow DS=\dfrac{DE.DF}{EF}=2\left(cm\right)\)
b.
Ta có: \(sinE=\dfrac{DF}{EF}=\dfrac{2\sqrt{5}}{5}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{2\sqrt{5}}{5}\)
\(\Rightarrow M=\dfrac{2\sqrt{5}}{5}+\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)