Cho tam giác ABC, biết S là 108dm2, cạnh AC = 27 dm. Tính độ dài đường cao BI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý Pi-ta-go thì \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ta có:
\(BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)
\(BH=\frac{12^2}{13}=\frac{144}{13}\left(cm\right)\)
Độ dài đường cao BI là :
224 x 2 : 28 = 16 ( mm )
Đáp số : 16 mm
Chúc bạn học tốt !
Giải :
Độ dài đường cao BI là :
\(224\times2\text{ : }28=16\left(\text{mm}\right)\)
Đáp số : 16mm
#Học tốt
\(S.tam.gi\text{ác}.ABC.l\text{à}:22,5\times22,5=506,25\left(cm^2\right)\\ \text{Đ}\text{ư}\text{ờng}.cao.BC.l\text{à}:\dfrac{506,25\times2}{11,25}=90\left(cm\right)\)
b, Chiều cao BI là:\(\dfrac{506,25\times2}{56,25}=18\left(cm\right)\)
Đổi: 90cm=9dm
Vì góc A vuông nên cạnh AC là chiều cao tương ứng với đáy AB.
Diện tích hình tam giác ABC là :
12x9=108 (dm2)
Đ/S:108 dm2
Câu 1:
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)
\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)
hay \(AH=\dfrac{14}{5}=4.8cm\)
Vậy: AH=4,8cm
Câu 2:
Ta có: BC=BH+CH(H nằm giữa B và C)
hay BC=5+6=11(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=5\cdot11=55\)
hay \(AB=\sqrt{55}cm\)
Vậy: \(AB=\sqrt{55}cm\)
Câu 4:
Không có hàm số nào không phải là hàm số bậc nhất