K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

1/11>1/110 ;1/12>1/110  ......1/109>1/110;1/110=1/110 

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}>100\cdot\frac{1}{110}>\frac{9}{10}\)

\(\Rightarrow\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)>\frac{1}{10}+\frac{1}{9}=1\left(đpcm\right)\)

22 tháng 7 2016

ai biết thì giải hộ mình nha. Mình cảm ơn

6 tháng 3 2019

\(A=\frac{10^{11}-1}{10^{12}-1}\Leftrightarrow10A=1-\frac{9}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)

18 tháng 3 2017

Ta có :

\(\frac{1}{10}>\frac{1}{20}\)

\(\frac{1}{11}>\frac{1}{20}\)

\(\frac{1}{12}>\frac{1}{20}\)     \(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(1)

.....

\(\frac{1}{19}>\frac{1}{20}\)

Ta có :

\(\frac{1}{20}>\frac{1}{30}\)

\(\frac{1}{21}>\frac{1}{30}\)

\(\frac{1}{22}>\frac{1}{30}\)      \(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)(2) 

........

\(\frac{1}{29}>\frac{1}{30}\)

Ta có :

\(\frac{1}{30}>\frac{1}{40}\)

\(\frac{1}{31}>\frac{1}{40}\)                \(\Rightarrow\frac{1}{30}+\frac{1}{31}+....+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)(3)

.........

\(\frac{1}{39}>\frac{1}{40}\)

Từ 1 , 2 , 3 ,

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

=> ....... > 1 

18 tháng 3 2017

1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2 
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3 
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4 
\(\Rightarrow\)1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1

20 tháng 7 2019

Ta có : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)

\(\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)

Thấy : \(\frac{1}{11}>\frac{1}{100}\)

            \(\frac{1}{12}>\frac{1}{100}\)

              ...

              \(\frac{1}{99}>\frac{1}{100}\)

Cộng từng vế : \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+...+\frac{1}{100}\)( 90 SH 1/100)

                           \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{9}{10}\)

   =>                      \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}\)

    =>      Tổng trên > 1

21 tháng 2 2017

A không thể lớn hơn 1 được

21 tháng 2 2017

Ta có:

\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{40}{50}=\frac{4}{5}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

Từ đây ta suy ra 

A > \(\frac{4}{5}+\frac{1}{2}+\frac{1}{100}=1,31>1\)  

16 tháng 6 2016

http://olm.vn/hoi-dap/question/88701.html

28 tháng 2 2017

 Vì A > 1/91+1/91+...+1/91=1/91*91=1

 Vậy A>1

28 tháng 2 2017

30 số hạng đầu lớn hơn 1 

\(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=\frac{1}{2}\)\(\frac{1}{2}\)

\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+..+\frac{1}{30}=\frac{1}{3}\)

\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)

=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)