K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

a) Gọi I là trung điểm của OA, ta ngay lập tức có được \(IO=IA=\frac{OA}{2}\)và BI, CI lần lượt là các trung tuyến của các tam giác OAB và OAC

Vì AB là tiếp tuyến tại A của đường tròn (O) \(\Rightarrow AB\perp OB\)tại B \(\Rightarrow\Delta OAB\)vuông tại B

\(\Delta OAB\)vuông tại B có trung tuyến BI \(\Rightarrow IB=\frac{OA}{2}\)

Chứng minh tương tự, ta có: \(IC=\frac{OA}{2}\)

Như vậy ta có \(IO=IA=IB=IC\left(=\frac{OA}{2}\right)\)

Vậy 4 điểm A, B, O, C cùng nằm trên đường tròn có tâm I, đường kính là OA.

b) Nhận thấy \(OB=OC\)(cùng bằng bán kính của (O)) 

\(\Rightarrow\)O nằm trên đường trung trực của BC. (1)

Xét đường tròn (O) có 2 tiếp tuyến tại B và C cắt nhau tại A \(\Rightarrow AB=AC\)(tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\)A nằm trên đường trung trực của BC. (2)

Từ (1) và (2) \(\Rightarrow\)OA là trung trực của BC \(\Rightarrow OA\perp BC\left(đpcm\right)\)

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

b: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=OA^2-AB^2

20 tháng 9 2021
Tui ko bt lm đâu há há

a: Xét tứ giác OAMB có

góc OAM+góc OBM=180 độ

nên OAMB là tứ giác nội tiêp

b: Xét (O) có

MA,MB là tiếp tuyến

nên MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc với AB

13 tháng 12 2020

Sửa đề: Cho đường tròn(O) có A là điểm nằm bên ngoài đường tròn

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: OB=OC và AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC(đpcm)

b) Xét (O) có 

ΔDBC nội tiếp đường tròn có DC là đường kính

nên ΔDBC vuông tại B(Định lí)

⇒DB⊥BC

Ta có: DB⊥BC(cmt)

AO⊥BC(cmt)

Do đó: DB//AO(Định lí 1 từ vuông góc tới song song)