cho hệ phương trình \(\left\{{}\begin{matrix}x-2y=m+2\\2x-y=2m+4\end{matrix}\right.\)
tìm m để hệ có nghiệm (x,y) sao cho x2-y2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)
\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
a: Khi m=2 thì hệ sẽ là;
2x-y=4 và x-2y=3
=>x=5/3 và y=-2/3
b: mx-y=2m và x-my=m+1
=>x=my+m+1 và m(my+m+1)-y=2m
=>m^2y+m^2+m-y-2m=0
=>y(m^2-1)=-m^2+m
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1; m<>-1
=>y=(-m^2+m)/(m^2-1)=(-m)/m+1
x=my+m+1
\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)
x^2-y^2=5/2
=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)
=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)
=>2(3m^2+4m+1)=5(m^2+2m+1)
=>6m^2+8m+2-5m^2-10m-5=0
=>m^2-2m-3=0
=>(m-3)(m+1)=0
=>m=3
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=3m-my\\mx-y=m^2-2\end{matrix}\right.\)
\(\Rightarrow m\left(3m-my\right)-y=m^2-2\)
\(\Leftrightarrow2m^2+2=y\left(1+m^2\right)\)
\(\Leftrightarrow y=\dfrac{2m^2+2}{1+m^2}=2\)
\(\Rightarrow x=3m-2m=m\)
Có \(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)
\(\Leftrightarrow\left(m-1-\sqrt{3}\right)\left(m-1+\sqrt{3}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\)
Vậy...
\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3m\\2x-y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m-1\end{matrix}\right.\)
Theo đề: \(x^2-2y-1=0\)
\(\Leftrightarrow m^2-2\left(m-1\right)-1=0\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\).
Vậy: \(m=1.\)
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
- Từ PT ( II ) ta có : \(xy\left(x+y\right)=2xy=4m^2-2m\)
\(\Rightarrow xy=2m^2-m\)
- Hệ PT trên có nghiệm là nghiệm của PT :
\(x^2-2x+2m^2-m=0\) ( I )
Có : \(\Delta^,=b^{,2}-ac=1-\left(2m^2-m\right)=-2m^2+m-1\)
- Để PT ( i ) có nghiệm \(\Leftrightarrow\Delta^,>0\)
\(\Leftrightarrow-2m^2+m-1>0\)
Vậy không tồn tại m để hệ phương trình có nghiệm .
Phương trình (i) có nghiệm $\Leftrightarrow \Delta\geq 0$ chứ không phải $>0$ bạn nhé.
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\\left(m+1\right)x=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\\left(m+1\right)x=\left(m+1\right)^2\end{matrix}\right.\)
Pt có nghiệm duy nhất \(\Leftrightarrow m\ne-1\)
Khi đó: \(\left\{{}\begin{matrix}x=m+1\\y=m-3\end{matrix}\right.\)
\(x^2-y^2=4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2=4\)
\(\Leftrightarrow8m=12\Rightarrow m=\dfrac{3}{2}\)