cho ΔABC, AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Nối B với D. Gọi M là trung điểm của BD.
A. chứng minh ΔABM=ΔADM.
B.Chứng minh: AM là tia phân giác của góc BAC.
C.Trên tia AB lấy điểm E sao cho AE=AC.Chứng minh DE=BC
D.Gọi I là giao điểm của BC và DE. Chứng minh A,M,I thẳng hàng
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
c: Ta có: \(\widehat{ABD}+\widehat{EBD}=180^0\)
\(\widehat{ADB}+\widehat{BDC}=180^0\)
mà \(\widehat{ABD}=\widehat{ADB}\)
nên \(\widehat{EBD}=\widehat{BDC}\)
Xét ΔAEC có
AB/AE=AD/AC
Do đó: BD//CE
Xét tứ giác BDCE có BD//CE
nên BDCE là hình thang
mà \(\widehat{EBD}=\widehat{BDC}\)
nên BDCE là hình thang cân
Suy ra: DE=BC