cho hình vuông ABCD điểm M thuộc BC. qua B kẻ đường thẳng vuông góc với DM. Đường thẳng này cắt DM và DC tại H và K.
a. chứng minh Các tứ giác ABHD,BHCD nội tiếp đường tròn
b.Tính góc CHK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, tam giác AND đồng dạng với tam giác MAB (gg)=>AM/MB=AN/AD
=>AM.AD=AN.MB => AM^2.AD^2=AN^2.MB^2
Cộng 2 vế với AN^2.AD^2 =>AM^2.AD^2 + AN^2.AD^2 = AN^2.MB^2 + AN^2.AD^2
=>AD^2.(AM^2+AN^2)=AN^2(MB^2+AB^2)
=>AD^2(AM^2+AN^2)=AN^2.AM^2 (vì MB^2+AB^2=AM^2 theo định lý pytago)
=>1/AD^2=(AN^2+AM^2)/AM^2.AN^2
=>1/AD^2=1/AM^2+1/AN^2
a. Theo giả thiết ABCD là hình vuông nên ÐBCD = 900; BH vuông góc DE tại H nên góc BHD = 900
=> như vậy H và C cùng nhìn BD dưới một góc bằng 900 nên H và C cùng nằm trên đường tròn đường kính BD
=> BHCD là tứ giác nội tiếp.
b. BHCD là tứ giác nội tiếp
=> góc BDC + góc BHC = 1800. (1)
góc BHK là góc bẹt nên góc KHC + góc BHC = 1800 (2).
Từ (1) và (2) => góc CHK = góc BDC mà góc BDC = 450 (vì ABCD là hình vuông)
=> góc CHK = 450 .
c. Xét tam giác KHC và tam giác KDB ta có góc CHK = góc BDC = 450 ; góc K là góc chung
=> tam giác KHC ~ tam giác KDB =>\(\dfrac{KC}{KB}\) = \(\dfrac{KH}{KD}\)
=> KC x KD = KH x KB.
d.Ta luôn có góc BHD = 900 và BD cố định nên khi E chuyển động trên cạnh BC cố định thì H chuyển động trên cung BC (E ≡ B thì H ≡ B; E ≡ C thì H ≡ C).
1) ta có: góc BHD= góc BCD= 90độ
tứ giác BHCD có hai đỉnh H,C BD có một góc vuông
➜tứ giác BHCD là tứ giác nội tiếp
2)tứ giác BHCD là tứ giác nội tiếp (đpcm)
➜góc BDC+ góc BEC = 180 độ
mà góc CHK+ góc BEC =180 độ (bù nhau)
➩góc BDC = 45 độ (đường chéo chứa hai góc bằng nhau)➩góc CHK = 45 độ
3)xét ΔDHK và ΔBCK, ta có:
góc DHK = góc BCK = 90 độ
góc DHK chung
➜ΔDHK ∞ ΔBCK (g.g)
➜\(\dfrac{KC}{KH}\cdot\dfrac{KB}{KD}\)➜KC*KD=KH*KB (đpcm)
a: góc BHD=góc BAD=góc BCD=90 độ
=>A,B,H,D,C cùng nằm trên đường tròn đường kính BD
=>AHCD nội tiếp
Tâm là trung điểm của BD
b: Xét ΔBDK có
BC,DH là đường cao
BC cắt DH tại M
=>M là trực tâm
=>KM vuông góc DB
a, Điểm A và H cùng nhìn đoạn BD dưới 1 góc 90 =>tứ giác ABHD nội tiếp
cmtt : Điểm H và C cùng nhìn đoạn BD dưới 1 goc 90 => tứ giác BHCD nội tiếp
b, Tứ giác BHCD nội tiếp =>góc CHK=góc BDC ( vì cùng bù với góc CHB)
mà góc BDC=45=>góc CHK=45