Chứng minh rằng số -0,7(4343-1717) là một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(43^{43}-17^{17}\)
\(=43^{40}.43^3-17^{16}.17\)
\(=\overline{.....1}.\overline{.....7}-\overline{.....1}.7\)
\(=\overline{.....7}-\overline{.....7}\)
\(=\overline{.....0⋮}10\)
\(\Rightarrow dpcm\)
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
Số có tận cùng là 3 khi nâng lên lũy thừa mũ 4n sẽ có tận cùng là 1
\(\Rightarrow43^{43}=43^{4.10+3}=\left(....1\right).\left(.....7\right)=\left(....7\right)\)
Số có tận cùng là 7 khi nâng lên lũy thừa mũ 4n sẽ có tận cùng là 1
\(\Rightarrow17^{17}=17^{4.4+1}=\left(....1\right).\left(....7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(....7\right)-\left(....7\right)=\left(....0\right)\)
Vậy \(-0,7.\left(43^{43}-17^{17}\right)\)là 1 số nguyên
ta có 434 đồng dư với 1(mod 10)=>4340 đồng dư với 110,433 đồng dư với 7 (mod10)=> 4340 * 433 đồng dư với 1*7=7(mod10)
cs 174 đồng dư với 1(mod 7)=> 1716 đồng dư với 1 mod 7; 7 đồng dư vơi 7 mod 10=>1717 đồng dư với 7 mod 10
=>4343-1717 đồng dư với 7-7=0 mod 10 => 4343-1717 chia hết cho 10=> đpcm