Cho tam giác abc ( ab<ac). Đường cao AI. Gọi M,N,K lần lượt là trung điểm của cách cạnh AB,AC,BC.
a) Chứng minh tứ giác BMNC là hình thang.
b) Gọi P là điểm đối xứng của I qua M.
Chứng minh tứ giác AIBP là hình chữ nhật.
c) Chứng minh góc MIN = góc MKN
a) Xét tam giác ABC:
+ M là trung điểm của AB (gt).
+ N là trung điểm của AC (gt).
\(\Rightarrow\) MN là đường trung bình.
\(\Rightarrow\) MN // BC (Tính chất đường trung bình).
Xét tứ giác BMNC:
MN // BC (cmt).
\(\Rightarrow\) Tứ giác BMNC là hình thang.
b) Xét tứ giác AIBP:
+ M là trung điểm của AB (gt).
+ M là trung điểm của PI (P là điểm đối xứng của I qua M).
\(\Rightarrow\) Tứ giác AIBP là hình bình hành (dhnb).
Mà \(\widehat{AIB}=90^o\left(AI\perp BC\right).\)
\(\Rightarrow\) Tứ giác AIBP là hình chữ nhật (dhnb).
c) Xét tam giác ABC: MN là đường trung bình (cmt).
\(\Rightarrow\) MN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình).
Mà BK = KC = \(\dfrac{1}{2}\) BC (K là trung điểm của BC).
\(\Rightarrow\) MN = BK = KC = \(\dfrac{1}{2}\) BC.
Xét tứ giác MNKB:
+ MN = BK (cmt).
+ MN // BK (MN // BC).
\(\Rightarrow\) Tứ giác MNKB là hình bình hành (dhnb).
\(\Rightarrow\) \(\widehat{MNK}=\widehat{MBK}\) (Tính chất hình bình hành).
Mà \(\widehat{MBK}=\widehat{MIB}\) (Tứ giác AIBP là hình chữ nhật).
\(\Rightarrow\widehat{MNK}=\widehat{MIB}.\)
Lại có: \(\widehat{MIB}=\widehat{IMN}\) (MN // BC).
\(\Rightarrow\widehat{MNK}=\widehat{IMN}.\)
Xét tứ giác MNKI: MN // KI (MN // BC).
\(\Rightarrow\) Tứ giác MNKI là hình thang.
Mà \(\widehat{IMN}=\widehat{MNK}\left(cmt\right).\)
\(\Rightarrow\) Tứ giác MNKI là hình thang cân.
\(\Rightarrow\) \(\widehat{MIN}=\widehat{MKN.}\)
giup voi moi nguoi