K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2022

a) Xét tam giác ABC:

+ M là trung điểm của AB (gt).

+ N là trung điểm của AC (gt).

\(\Rightarrow\) MN là đường trung bình.

\(\Rightarrow\) MN // BC (Tính chất đường trung bình).

Xét tứ giác BMNC:

MN // BC (cmt).

\(\Rightarrow\) Tứ giác BMNC là hình thang.

b) Xét tứ giác AIBP:

+ M là trung điểm của AB (gt).

+ M là trung điểm của PI (P là điểm đối xứng của I qua M).

\(\Rightarrow\) Tứ giác AIBP là hình bình hành (dhnb).

Mà \(\widehat{AIB}=90^o\left(AI\perp BC\right).\)

\(\Rightarrow\) Tứ giác AIBP là hình chữ nhật (dhnb).

c) Xét tam giác ABC: MN là đường trung bình (cmt).

\(\Rightarrow\) MN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình).

Mà BK = KC = \(\dfrac{1}{2}\) BC (K là trung điểm của BC).

\(\Rightarrow\) MN = BK = KC = \(\dfrac{1}{2}\) BC.

Xét tứ giác MNKB:

+ MN = BK (cmt).

+ MN // BK (MN // BC).

\(\Rightarrow\) Tứ giác MNKB là hình bình hành (dhnb).

\(\Rightarrow\) \(\widehat{MNK}=\widehat{MBK}\) (Tính chất hình bình hành).​

Mà \(\widehat{MBK}=\widehat{MIB}\) (Tứ giác AIBP là hình chữ nhật).

\(\Rightarrow\widehat{MNK}=\widehat{MIB}.\)

Lại có: \(\widehat{MIB}=\widehat{IMN}\) (MN // BC).

\(\Rightarrow\widehat{MNK}=\widehat{IMN}.\)

Xét tứ giác MNKI: MN // KI (MN // BC).

\(\Rightarrow\) Tứ giác MNKI là hình thang.

Mà \(\widehat{IMN}=\widehat{MNK}\left(cmt\right).\)

\(\Rightarrow\) Tứ giác MNKI là hình thang cân.

\(\Rightarrow\) \(\widehat{MIN}=\widehat{MKN.}\)

12 tháng 1 2022

giup voi moi nguoi

21 tháng 3 2022

C

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

Bài 1: 

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: XétΔABC có BC<AB<AC

nên \(\widehat{A}< \widehat{C}< \widehat{B}\)

Xet ΔABC vuông tại A và ΔADC vuông tại A có

AB=AD

AC chung

=>ΔABC=ΔADC

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABD vuông tại D và ΔCAD vuông tại  D có

góc DBA=góc DAC

=>ΔABD đồng dạng với ΔCAD

b: góc EAF+góc EDF=180 độ

=>AFDE nội tiếp

=>góc AFD+góc AED=180 độ

=>góc AFD=góc CED

27 tháng 10 2021

\(sinC=\dfrac{AB}{AC}\Rightarrow AC=AB:sinC=17:sin67^0\simeq18,5\left(m\right)\)