- giai phuong trinh x4+4x3+5x2+2x-10=can (x2+2x+5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết, ta rút gọn các đa thức:
- Q(x) = 4x3 – 2x + 5x2 - 2x3 + 1 - 2x3
Q(x) = (4x3- 2x3- 2x3) – 2x + 5x2 + 1
Q(x) = 0 – 2x + 5x2 + 1
Q(x) = – 2x + 5x2 + 1
- R(x) = - x2 + 2x4 + 2x - 3x4 – 10 + x4
R(x) = - x2 + (2x4- 3x4+ x4) + 2x – 10
R(x) = - x2 + 0 + 2x – 10
R(x) = - x2 + 2x – 10
Sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm dần của biến ta có:
Q(x) = 5x2 – 2x + 1
R(x) = - x2 + 2x – 10
a)x2-10=0
<=>x2=10
<=>x=\(\sqrt{10}\)hoặc \(-\sqrt{10}\)
b)2x2-6=0
<=>2x2=6
<=>x=3
<=>x=\(\sqrt{3}\)hoặc\(-\sqrt{3}\)
c)câu này mk chưa hiểu đề cho lắm
a) (15x2-1+9x4-6x3+2x) :( 5 + 3x2-2x)
b) ( -19x+ 10+ 3x4- 5x2+11x3) : ( 3x+ x2-2)
c) (x4-14-x) : (x-2)
c: \(\dfrac{x^4-x-14}{x-2}\)
\(=\dfrac{x^4-2x^3+2x^3-4x^2+4x^2-8x+7x-14}{x-2}\)
\(=x^3+2x^2+4x+7\)
\(3+\sqrt{2x-3}=x\) (ĐKXĐ: x \(\ge\)1,5)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow2x-3=x^2-6x+9\)
\(\Leftrightarrow-x^2+8x-12=0\)
\(\Leftrightarrow-\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow x^2-6x-2x+12=0\)
\(\Leftrightarrow x.\left(x-6\right)-2.\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}\left(\text{TMĐK}\right)}\)
Vậy ...
Ta có: f(x) + g(x) – h(x)
= (x5 – 4x3 + x2 – 2x + 1) + (x5 – 2x4 + x2 – 5x + 3) – (x4 – 3x2 + 2x – 5)
= x5 – 4x3 + x2 – 2x + 1 + x5 – 2x4 + x2 – 5x + 3 – x4 + 3x2 - 2x + 5
= (x5 +x5) – (2x4 + x4) – 4x3 + (x2 + x2 + 3x2)- (2x + 5x + 2x) + (1 + 3 + 5)
= (1 + 1)x5 – (2 + 1)x4 – 4x3 + (1 + 1 + 3)x2 - (2 + 5 + 2)x + (1 + 3 + 5)
= 2x5 – 3x4 – 4x3 + 5x2 – 9x + 9